
Testing

1 / 10



Unit Tests and Functional Tests
Unit tests are tests of individual system components

I usually automated (code that tests other code) written by
developers

I can be white box or black box
I often tests internal design elements that don’t map cleanly to

user-facing features

Functional, or acceptance tests

I black box
I usually not automated - test script performed by QA or

customer
I Note: in modern development, many functional tests are

automated
I ideally written by customer, expressing the customer’s

requirements for a feature to be “done”

Most of our discussion of testing will focus on unit testing.
2 / 10



Errors, Faults, Test Cases

Defects are not free, somebody gets paid for making them.
– Deming

I Failure: incorrect behavior of a component (a symptom)
I Fault, a.k.a. Bug or Defect: incorrect program or data object

(results from error)
I Error: human mistake, by commision or omission

A test case is a single input to the system with an expected output.

I If actual output differs we have a failure
I A good test case causes a failure which helps us find the bug

that cased it

3 / 10



White Box Tests
I We use the code to develop our tests
I Execute all lines of code by taking each branch (100%

coverage)

Given:
1 public static int fac(int n) {
2 if (n < 0) throw new IllegalArgumentException();
3 else if (n == 0) return 1;
4 else return n * fac(n - 1);
5 }

This test contains cases that cover each branch:
1 @Test
2 public void testFac() {
3 try {
4 fac(-1);
5 fail("Negative argument ’didnt cause IllegalArgumentException.")
6 } catch(IllegalArgumentException e) {}
7 assertEquals("Failed for n == 0.", 1, fac(0));
8 assertEquals("Failed for n > 0.", 120, fac(5));
9 }

4 / 10



Black Box Tests

Instead of looking at code, we test the specification (e.g., Javadoc)

I Boundary conditions (on and off boundary)
I Equivalence partitions (one case per)
I Plausible faults (specific values)

Ex: Write a unit test for public static int abs(int n) in
java.lang.Math, which returns the absolute value of an integer n.

1 @Test
2 public void absPositivesNegatives() {
3 assertEquals("Incorrect for positive numbers", 1, Math.abs(1));
4 assertEquals("Incorrect for negative numbers", 1, Math.abs(-1));
5 }

We include an assert for each equivalence partition. Notice that this
is similar to branch coverage in white box testing.

5 / 10



Test-Driven Development

I First Law: You may not write production code until you have
written a failing unit test.

I Second Law: You may not write more of a unit test than is
sufficient to fail, and not compiling is failing.

I Third Law: You may not write more production code than is
sufficient to pass the currently failing test.

Consequence: tests and code are written together in an interleaved
fashion.

Attitude: tests must be maintained to the same high standards as
production code.

6 / 10



F.I.R.S.T.

Five rules for clean tests. Tests must be

I fast,
I independent,
I repeatable,
I self-validating, and
I timely.

7 / 10



Fast and Independent

I Fast Tests should be fast. They should run quickly. When
tests run slow, you won’t want to run them frequently. If you
don’t run them frequently, you won’t find problems early
enough to fix them easily. You won’t feel as free to clean up
the code. Eventually the code will begin to rot.

I Independent Tests should not depend on each other. One test
should not set up the conditions for the next test. You should
be able to run each test independently and run the tests in any
order you like. When tests depend on each other, then the first
one to fail causes a cascade of downstream failures, making
diagnosis difficult and hiding downstream defects.

8 / 10



Repeatable and Self-Validating

I Repeatable Tests should be repeatable in any environment.
You should be able to run the tests in the production
environment, in the QA environment, and on your laptop while
riding home on the train without a network. If your tests aren’t
repeatable in any environment, then you’ll always have an
excuse for why they fail. You’ll also find yourself unable to run
the tests when the environment isn’t available.

I Self-Validating The tests should have a boolean output.
Either they pass or fail. You should not have to read through a
log file to tell whether the tests pass. You should not have to
manually compare two different text files to see whether the
tests pass. If the tests aren’t self-validating, then failure can
become subjective and running the tests can require a long
manual evaluation.

9 / 10



Timely

And finally:

I Timely The tests need to be written in a timely fashion. Unit
tests should be written just before the production code that
makes them pass. If you write tests after the production code,
then you may find the production code to be hard to test. You
may decide that some production code is too hard to test. You
may not design the production code to be testable.

Testing frameworks like ScalaTest and JUnit embody these rules.

10 / 10


