
SOLID Design Principles

1 / 20



Agile Design

Fundamental principle of agile design:
The code is the design. – Jack Reeves, 1992

Design Smells

I Rigidity – system is too hard to change becuase change in one
place forces changes in many other places

I Fragility – changes break things that are conceptually unrelated
I Immobility – too hard to resuse components in other systems
I Viscosity – hard to do it right, easy to do it wrong
I Needless Complexity – infrastructure with no direct benefit
I Needless Repetition – repeated structures that could be unified

under a single abstraction
I Opacity – hard to read and understand

Design smells avoided or fixed by applying design principles like SRP,
OCP . . .

2 / 20



SOLID Design Principles

I Single Responsibility Principle
I Open Closed Principle
I Liskov Substitution Principle
I Interface Segregation Principle
I Dependency Inversion Principle

These all boil down to (high) cohesion, (loose) coupling, and reuse.

3 / 20



SRP Counterexample – Too Many Responsibilities
1 public class GreetingFrame extends JFrame implements ActionListener {
2 private JLabel greetingLabel;
3 public GreetingFrame() {
4 ...
5 JButton button = new JButton("Greet!");
6 button.addActionListener(this);
7 ...
8 }
9 public void actionPerformed(ActionEvent e) {

10 Greeter greeter = new Greeter("bob");
11 String greeting = greeter.greet();
12 greetingLabel.setText(greeting);
13 }
14 }

I If we add other buttons or menu items to the GUI, we have to
modify the actionPerformed method to handle an additional
event source.

I If we change the behavior of the a button, we have to modify
the actionPerformed method.

4 / 20



SRP Refactoring
1 private class GreetButtonListener implements ActionListener {
2
3 private JLabel greetingLabel;
4
5 public GreetButtonListener(JLabel greetingLabel) {
6 this.greetingLabel = greetingLabel;
7 }
8 public void actionPerformed(ActionEvent e) {
9 ... }

10 }

1 public class GreetingFrame extends JFrame {
2 ...
3 public GreetingFrame() {
4 ...
5 button.addActionListener(new GreetButtonListener(greetingLabel));
6 ...
7 }
8 }

I Additions to the UI require changes only to GreetingFrame.
I Changes to greet button behavior require changes only to

GreetButtonListener.
5 / 20



Open-Closed Principle

Software Entities (classes, modules, functions) should be
open for extension, but closed for modification.

I Open for extension means the module should be extendable
with new behavior.

I Closed for modification means the module shouldn’t need to be
touched in order to add the extension.

Object-oriented polymorphism makes this possible, namely, to write
new code that works with old code without having to touch the old
code.

6 / 20



OCP Counterexample – Extension Requires Modification
1 public class Sql {
2 public Sql(String table, Column[] columns)
3 public String create()
4 public String insert(Object[] fields)
5 public String selectAll()
6 public String findByKey(String keyColumn, String keyValue)
7 public String select(Column column, String pattern)
8 public String select(Criteria criteria)
9 public String preparedInsert()

10 private String columnList(Column[] columns)
11 private String valuesList(Object[] fields, final Column[] columns)
12 private String selectWithCriteria(String criteria)
13 private String placeholderList(Column[] columns)
14 }

I This class violates SRP becuase there are multiple axes of
change, e.g., updating an exising statement type (like create)
or adding new kinds of statements.

I Extension with new SQL query types requires modifying this
class.

7 / 20



OCP Refactoring

Abstract base class that doesn’t change:
1 public abstract class Sql {
2 public Sql(String table, Column[] columns)
3 public abstract String generate();
4 }

Extended by adding new subclasses without touching other classes:
1 public class CreateSql extends Sql {
2 public CreateSql(String table, Column[] columns)
3 @Override public String generate()
4 }
5 public class SelectSql extends Sql {
6 public SelectSql(String table, Column[] columns)
7 @Override public String generate()
8 }

This is high cohesion, low coupling, and reuse of the interface
declared in the base class.

8 / 20



Liskov Substitution Principle (LSP)

Subtypes must be substitutable for their supertypes.

Most important principle in object-oriented design

9 / 20



LSP Counterexample

A suprising counter-example:
1 public class Rectangle {
2 public void setWidth(double w) { ... }
3 public void setHeight(double h) { ... }
4 }
5 public class Square extends Rectangle {
6 public void setWidth(double w) {
7 super.setWidth(w);
8 super.setHeight(w);
9 }

10 public void setHeight(double h) {
11 super.setWidth(h);
12 super.setHeight(h);
13 }
14 }

I We know from math class that a square “is a” rectangle.
I The overridden setWidth and setHeight methods in Square enforce

the class invariant of Square, namely, that width == height.

10 / 20



LSP Violation

Consider this client of Rectangle:
1 public void g(Rectangle r) {
2 r.setWidth(5);
3 r.setHeight(4);
4 assert r.area() == 20;
5 }

I Client (author of g) assumes width and height are independent
in r because r is a Rectangle.

I If the r passed to g is actually an instance of Square, what will
be the value of r.area()?

The Object-oriented is-a relationship is about behavior. Square’s
setWidth and setHeight methods don’t behave the way a Rectangle’s
setWidth and setHeight methods are expected to behave, so a Square

doesn’t fit the object-oriented is-a Rectangle definition. Let’s make
this more formal . . .

11 / 20



Conforming to LSP: Design by Contract
Require no more, promise no less.

Author of a class specifies the behavior of each method in terms of
preconditions and postconditions. Subclasses must follow two rules:

I Preconditions of overriden methods must be equal to or weaker
than those of the superclass (enforces or assumes no more than
the constraints of the superclass method).

I Postconditions of overriden methods must be equal to or
greater than those of the superclass (enforces all of the
constraints of the superclass method and possibly more).

In the Rectangle-Square case the postcondition of Rectangle’s
setWidth method:

1 assert((rectangle.w == w) && (rectangle.height == old.height))

cannot be satisfied by Square, which tells us that a Square doesn’t
satisfy the object-oriented is-a relationship to Rectangle.

12 / 20



LSP Conforming 2D Shapes

1 public interface 2dShape {
2 double area();
3 }
4 public class Rectangle implements 2dShape {
5 public void setWidth(double w) { ... }
6 public void setHeight(double h) { ... }
7 public double area() {
8 return width * height;
9 }

10 }
11 public class Square implements 2dShape {
12 public void setSide(double w) { ... }
13 public double area() {
14 return side * side;
15 }
16 }

13 / 20



Dependency Inversion Principle

a. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

b. Abstractions should not depend on details. Details should
depend on abstractions.

This basically means program to an interface, not a particular
implementation of the interface.

14 / 20



Dependency Inversion Principle

a. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

b. Abstractions should not depend on details. Details should
depend on abstractions.

This basically means program to an interface, not a particular
implementation of the interface.

14 / 20



DIP Counterexample[ˆ1]

1 public class RealBillingService {
2 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
3 PaypalCreditCardProcessor processor = new

PaypalCreditCardProcessor();
4 // Card charging code ...
5 }
6 }

I Dependence on particular implementation of credit card
processor

new is a code smell.

[ˆ1] https://github.com/google/guice/wiki/Motivation

15 / 20



DIP Refactoring

1 public interface CreditCardProcessor { ... }
2
3 public class RealBillingService {
4 private final CreditCardProcessor processor;
5
6 public RealBillingService(CreditCardProcessor processor) {
7 this.processor = processor;
8 }
9

10 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
11 // Credit card charging code ...
12 }
13 }

I Now RealBillingService depends on the CreditCardProcessor

interface, not any particular implementation

16 / 20



Dependency Injection
1 public interface CreditCardProcessor { ... }
2
3 public class RealBillingService {
4 private final CreditCardProcessor processor;
5
6 public RealBillingService(CreditCardProcessor processor) {
7 this.processor = processor;
8 }
9

10 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
... }

11 }

Note that we’ve eliminated new by passing an instance of
CreditCardPricessor in the constructor

I This now satisfies the OCP because we can extend
RealBillingService to work with additional CreditCardProcessors
without modifying RealBillingService

I Wiring a class to its concrete dependencies external to the
class is known as dependency injection and it gets much fancier
than the manual approach shown here

17 / 20



Interface Segregation PrincipleClients should not be forced to depend on methods they
don’t use.

Break up fat interfaces into a set of smaller interfaces. Each client
depends on the small interface it needs, and none of the others.

Interface Segregation Principle (ISP)
Clients should not be forced to depend on methods they don’t
use.

Break up fat interfaces into a set of smaller interfaces. Each client
depends on the small interface it needs, and none of the others.

Additional UI methods in UI require recompilation of all the
transaction classes, even the ones that don’t use the new
methods.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 2340 15 / 16

Figure 1: Fat UI Interface

Additional UI methods in UI require recompilation of all the
transaction classes, even the ones that don’t use the new methods.

18 / 20



ISP Refactoring
ISP Example

Segregated UI interfaces:

Each transaction gets its own UI interface.
Adding transactions doesn’t require touching or recompiling other
transactions or UIs.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 2340 16 / 16

Figure 2: Segregated UI Interfaces

I Each transaction gets its own UI interface.
I Adding transactions doesn’t require touching or recompiling

other transactions or UIs.

19 / 20



Conclusion

Design is art and science. If something smells, fix it.

20 / 20


