SOLID Design Principles

Georgia
Tech

1/20

Agile Design

Fundamental principle of agile design:
The code is the design. — Jack Reeves, 1992

Design Smells

» Rigidity — system is too hard to change becuase change in one
place forces changes in many other places

P Fragility — changes break things that are conceptually unrelated

P> Immobility — too hard to resuse components in other systems

» Viscosity — hard to do it right, easy to do it wrong

» Needless Complexity — infrastructure with no direct benefit

P> Needless Repetition — repeated structures that could be unified
under a single abstraction

» Opacity — hard to read and understand

Design smells avoided or fixed by applying design principles like SRP,
OCP ... Georgia
Tech

2/20

SOLID Design Principles

» Single Responsibility Principle
» Open Closed Principle

» Liskov Substitution Principle
» Interface Segregation Principle
» Dependency Inversion Principle

These all boil down to (high) cohesion, (loose) coupling, and reuse.

Georgia
Tech

3/20

SRP Counterexample — Too Many Responsibilities

©OO~NOOO A WN -

public class GreetingFrame extends JFrame implements ActionListener {

private JLabel greetinglabel;
public GreetingFrame() {

JButton button = new JButton("Greet!");
button.addActionListener (this);

}

public void actionPerformed(ActionEvent e) {
Greeter greeter = new Greeter("bob");
String greeting = greeter.greet();
greetinglabel.setText (greeting);

» |f we add other buttons or menu items to the GUI, we have to
modlfy the actionPerformed method to handle an additional
event source.
» If we change the behavior of the a button, we have to modify
the actionPerformed method. Georgia
Tech

4/20

SRP Refactoring

private class GreetButtonListener implements ActionListener {

private JLabel greetingLabel;

public GreetButtonListener(JLabel greetingLabel) {
this.greetinglabel = greetinglabel;

}

public void actionPerformed(ActionEvent e) {

-}

QOO ~NOOOU A~ WN

[y

public class GreetingFrame extends JFrame {
public GreetingFrame() {

button.addActionListener (new GreetButtonListener(greetingLabel));

CO~NOOTAWNH

» Additions to the Ul require changes only to GreetingFrame.
» Changes to greet button behavior require changes only to Gegrgia
eCl

GreetButtonListener.
5/20

Open-Closed Principle

Software Entities (classes, modules, functions) should be
open for extension, but closed for modification.

» Open for extension means the module should be extendable

with new behavior.
» Closed for modification means the module shouldn’t need to be
touched in order to add the extension.

Object-oriented polymorphism makes this possible, namely, to write
new code that works with old code without having to touch the old
code.

Georgia
Tech

6/20

OCP Counterexample — Extension Requires Modification

public class Sql {

public Sql(String table, Column[] columns)

public String create()

public String insert(Object[] fields)

public String selectAll()

public String findByKey(String keyColumn, String keyValue)

public String select(Column column, String pattern)

public String select(Criteria criteria)

public String preparedInsert()

private String columnList(Column[] columns)

private String valuesList(Object[] fields, final Column[] columns)
private String selectWithCriteria(String criteria)

private String placeholderList(Column[] columns)

©OO~NOOO A WN -

= e
A WNRRO
[

» This class violates SRP becuase there are multiple axes of
change, e.g., updating an exising statement type (like create)
or adding new kinds of statements.
> Extension with new SQL query types requires modifying this
class. Georgia
Tech

7/20

OCP Refactoring

S~ W=

O~NOOTDWN =

Abstract base class that doesn't change:

public abstract class Sql {
public Sql(String table, Column[] columns)
public abstract String generate();

}

Extended by adding new subclasses without touching other classes:

public class CreateSql extends Sql {
public CreateSql(String table, Column[] columns)
@0verride public String generate()

}

public class SelectSql extends Sql {
public SelectSql(String table, Column[] columns)
@0verride public String generate()

}

This is high cohesion, low coupling, and reuse of the interface
declared in the base class.

Georgia
Tech

8/20

Liskov Substitution Principle (LSP)

Subtypes must be substitutable for their supertypes.

Most important principle in object-oriented design

Georgia
Tech

9/20

LSP Counterexample

—
QWO ~NOOA~WNH

= e
A WN =

A suprising counter-example:

public class Rectangle {
public void setWidth(double w) { ... }
public void setHeight(double h) { ... }
}
public class Square extends Rectangle {
public void setWidth(double w) {
super.setWidth(w) ;
super.setHeight (w) ;
}
public void setHeight(double h) {
super.setWidth(h);
super.setHeight (h) ;
}
}

> We know from math class that a square “is a” rectangle.
» The overridden setwidth and setHeight methods in square enforce
the class invariant of square, namely, that width == height.

Georgia
Tech

10/20

LSP Violation

GO~ WN =

Consider this client of Rectangle:

public void g(Rectangle r) {
r.setWidth(5);
r.setHeight (4);
assert r.area() == 20;

}

» Client (author of g) assumes width and height are independent
in r because r is a Rectangle.

» If the r passed to g is actually an instance of square, what will
be the value of r.area()?

The Object-oriented is-a relationship is about behavior. square's

setWidth and setHeight methods don't behave the way a Rectangle's

setWidth and setHeight methods are expected to behave, so a square

doesn’t fit the object-oriented is-a Rectangle definition. Let's make

this more formal . .. Georgia
Tech

11/20

Conforming to LSP: Design by Contract

Require no more, promise no less.

Author of a class specifies the behavior of each method in terms of
preconditions and postconditions. Subclasses must follow two rules:

» Preconditions of overriden methods must be equal to or weaker
than those of the superclass (enforces or assumes no more than
the constraints of the superclass method).

» Postconditions of overriden methods must be equal to or
greater than those of the superclass (enforces all of the
constraints of the superclass method and possibly more).

In the Rectangle-Square case the postcondition of Rectangle’s
setWidth method:

1 |assert((rectangle.w == w) && (rectangle.height == old.height)) ‘

cannot be satisfied by square, which tells us that a square doesn’t
satisfy the object-oriented is-a relationship to Rrectangle. Gegrgia

12/20

LSP Conforming 2D Shapes

CO~NOOTDAWN

public interface 2dShape {
double area();

}
public class Rectangle implements 2dShape {
public void setWidth(double w) { ... }
public void setHeight(double h) { ... }
public double area() {
return width * height;
}
}
public class Square implements 2dShape {
public void setSide(double w) { ... }
public double area() {
return side * side;
¥
}

Georgia
Tech

13/20

Dependency Inversion Principle

a. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

This basically means program to an interface, not a particular
implementation of the interface.

Georgia
Tech

14/20

Dependency Inversion Principle

a. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

b. Abstractions should not depend on details. Details should
depend on abstractions.

This basically means program to an interface, not a particular
implementation of the interface.

Georgia
Tech

14/20

DIP Counterexample[™1]

1 |public class RealBillingService {

2 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {

3 PaypalCreditCardProcessor processor = new
PaypalCreditCardProcessor() ;

4 // Card charging code ...

5 }

6 |}

» Dependence on particular implementation of credit card
processor

new iS a code smell.

[*1] https://github.com/google/guice/wiki/Motivation

Georgia
Tech

15/20

DIP Refactoring

1 |public interface CreditCardProcessor { ... }

2

3 |public class RealBillingService {

4 private final CreditCardProcessor processor;

5

6 public RealBillingService(CreditCardProcessor processor) {
7 this.processor = processor;

8 }

9

10 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
11 // Credit card charging code ...

12 }

13 |}

> Now RealBillingService depends on the creditCardProcessor
interface, not any particular implementation

Georgia
Tech

16 /20

Dependency Injection

public interface CreditCardProcessor { ... }

public class RealBillingService {
private final CreditCardProcessor processor;

public RealBillingService(CreditCardProcessor processor) {
this.processor = processor;

}

QWO ~NOO A~ WNH

[y

public Receipt chargeOrder (PizzaOrder order, CreditCard creditCard) {

[y
[
o

Note that we've eliminated new by passing an instance of
CreditCardPricessor in the constructor

» This now satisfies the OCP because we can extend
RealBillingService to work with additional creditcardProcessors
without modifying RealBillingService

> Wiring a class to its concrete dependencies external to the)
class is known as dependency injection and it gets much fantiefoeh

than the manual approach shown here 20

Interfac@/iéﬁggﬁg@yggt ll:;g i)%gpcjleto depend on methods they

don’t use.

Break up fat interfaces into a set of smaller interfaces. Each client
depends on the small interface it needs, and none of the others.

VAN

[l |

Deposit Withdrawal Transfer
Transaction T

'
'
'

S, Ao s
|

v

<<interface>>

+ requestDepositAmount()
+ requestWithdrawalAmount()
+ requestTransferAmount()
+ informInsufficientFunds()

Figure 1: Fat Ul Interface

Additional Ul methods in Ul require recompilation of all the Gegrgia

transaction classes, even the ones that don't use the new methods.
18/20

ISP Refactoring

Z\

[l l

‘ Deposit ‘ |wunumwa| ‘ Transfer l

v

£ 5 N
<d<interface>> I <<interface>>
Depositul

— + requestWith:)
+ requestDepositAmount() + informinsufficientFunds() + rﬁues(TransterAmnum()
3 I

b bemmmm e m 4

<<interface>>

+ requestDepositAmount()
+ requestWithdrawalAmount()
+ requestTransferAmount()

+ informinsufficientFunds()

Figure 2: Segregated Ul Interfaces

» Each transaction gets its own Ul interface.
» Adding transactions doesn't require touching or recompiling
other transactions or Uls. .
Georgia
Tech

19/20

Conclusion

Design is art and science. If something smells, fix it.

Georgia
Tech

20/20

