
Software Engineering

1 / 16



Software Engineering

Definition 3.2760 from ISO/IEC/IEEE 24765:2010(E)

1. the systematic application of scientific and technological
knowledge, methods, and experience to the design,
implementation, testing, and documentation of software.
ISO/IEC 2382-1:1993, Information technology – Vocabulary –
Part 1: Fundamental terms.01.04.07.

2. the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software; that is, the application of engineering to software.

2 / 16



The Definition Expanded

the systematic application of . . . methods . . . [and] disciplined,
quantifiable approach to the development, operation, and
maintenance of software

I Software development life cycle
I Software development process models

application of scientific and technological knowledge

I Software design principles
I Programming languages
I Software development tools

the systematic application of . . . experience

I Process improvement frameworks

3 / 16



Software Development Life Cycle (SDLC)

All software development projects go through identifiable phases:

I Planning
I Requirements Analysis
I Design
I Implementation
I Integration
I Testing
I Deployment
I Maintenance

Process models differ in how they approach these phases and
organize them into a complete software development project

4 / 16



Planning and Requirements Analysis

Planning

I Identify the need for a software system
I Allocate resources (people, budget, equipment)
I Set a timeline for development

Requirements Analysis

I Identify the users and other stakeholders of the system
I Elicit requirements from the stakeholders: features,

performance characteristics, usability requirements

Requirements and planning usually interleaved - requirements drive
timelines, resources constrain requirements

5 / 16



Design and Implementation

Design: how the software will be structured to meet the
requirements

I High-level architecture, e.g., client-server, desktop application,
web application

I Component design using object-oriented design,
entity-relationship modeling, etc

Implementation: writing the code to realize the design in a working
system

I Programming
I Building
I Art and UI (icons, style sheets, dialog layouts, etc)

6 / 16



Integration and Testing

Integration: putting the components together

I Make sure software components work together
I Make sure software integrates with host operating system

Testing: verifying that the software works as expected

I Some tests done by developers (unit tests, some functional
tests)

I Some tests done by quality assurance engineers and customer
(functional tests, acceptance tests)

7 / 16



Deployment and Maintenance

Deployment: putting the software in the hands of its users

I How to deploy

Maintenance: fixing bugs and adding enhancements or new features
after the software has been deployed

I Enhancements and bug fixes for current release
I Development of new version

8 / 16



Software Development Process Models

[ˆ1]

Two stereotypical process models:
waterfall and iterative
I Waterfall processes, a.k.a.

sequential processes, finish each
phase of the SDLC before moving
on to the next
I Sometimes called “big bang”

development, since in classic
waterfall the system under
development is not released until
the end of the project

I Incremental waterfall processes
include intermediate releases in
the implementation phase

[ˆ1] https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg

9 / 16



Iterative Development

[ˆ1]

I Divide the project into short
(typically two-week) iterations

I Each iteration progresses through
each of the SDLC phases
I Each iteration accomplishes a

subset of the requirements and
releases a working product

[ˆ1]
https://en.wikipedia.org/wiki/File:Spiral_model_(Boehm,_1988).svg

10 / 16



Rational Unified Process
Developed by Rational Software and acquired by IBM in 2003

Unifies waterfall and iterative process models with four life-cycle
phases:

I Inception: feasibility - vision, scope, rough estimates
I Elaboration: most requirements, more detailed estimates,

implementation of core architecture and highest risk features
I Construction: implementation of remaining features, iterative

refinement of requirements and estimates
I Transition: beta tests, deployment

[ˆ1]

[ˆ1] https://commons.wikimedia.org/wiki/File:Development-
iterative.png

11 / 16



Software Design Science

Programs = data structures + algorithms

What software engineers learn in school

I Computer science
I Data structures and algorithms
I Programming languages
I Object-oriented programming, Functional programming
I Systems, networks, HCI, AI (threads)

I Software design and implementation
I Design patterns
I Modeling approaches and languages (like UML)
I Programming

12 / 16



Software Development Practice

Programming tools

I Editors, debuggers, profilers

Build tools

I Make, SCons, Ant, Maven, SBT, Gradle, Buildr, Rake

Integration tools

I Test runners, installer software, continuous integration servers

Deployment and maintenance tools

I Software configuration management (CVS, Subversion, Git)
I Bug trackers (Bugzilla, Trac, GitHub)
I Application/web servers (Apache httpd, Tomcat, . . . )
I Containers (Docker, . . . )
I Cloud

13 / 16



ISO 9001
A generic quality management standard with a process-based
management approach

I International standard based on british standard dating back to
1987 (current version is 2000)

I Adopted by many industries: aviation, automotive, software

I Based on 8 quality principles from ISO 9000:

I Customer focus

I Leadership

I Involvement of people

I Process approach

I System approach to management Continual improvement

I Factual approach to decision making

I Mutually beneficial supplier relationships

Doesn’t specify the process; can meet ISO 9001 with
RUP/XP/Scrum/Homegrown Process

Some customers will want or require ISO 9001 certification

14 / 16



Capability Maturity Model (CMM/CMMI)

Developed by Carnegie Mellon’s Software Engineering Institute -
originally for software engineering, now generically covers acquisition
development, and services (and people)

I Models include goals, practices organized into practice areas

I Appraisals grade organizations for capability levels (0 through
3) in each process area, and maturity levels (1 through 5)

I CMMI documented in zillions of pages of engagingly written
documents and books. Consult them if you’re fortunate enough
to be implementing CMMI.

15 / 16



Conclusion

The engineering of software encompasses process and practice

I Process - documentation, project management
I Practice - software architecture, design, implementation, tools

and technologies

In this class we focus on

I Agile software development process
I Object-oriented and functional design
I State of the art technologies and tools

16 / 16


