
Scala Play! Framework

1 / 14



Web Applications

A web application is client-server application that uses the
hyper-text transfer protocol (HTTP).

▶ HTTP request is sent from client to server
▶ HTTP response is sent back to client from server
▶ HTTP is stateless - there is no inherent relationship betwen

request/response pairs
▶ We simulate sessions (related request/response pairs) by

setting cookies on the client.
▶ Web browsers – Firefox, Chrome – are platforms for clients.
▶ Web servers – Apache, Tomcat, nginx – are plaforms for

servers.

A particular set of web pages running in a browser that
communicate with a particular set of web server applications
constitutes a web application.

2 / 14



HTTP Protocol
HTTP request message contain a request line, headers, and a body.
Each request line specifies a method. Methods we care about:

▶ GET - get a resource from a server running at a specified URI
▶ POST
▶ UPDATE
▶ DELETE

For example, if you type http://www.gatech.edu/ in your browser’s
address bar, or follow a hyperlink whose target is
http://www.gatech.edu/, you browser will send a GET request
that looks something like this:

1 GET http://www.gatech.edu/ HTTP/1.1

By the way, the inclusion of the access mechanism http:// makes
the URI above a URL. In gneral, though, it’s a waste of mentons
to distinguish between URIs and URLs.

See http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html
3 / 14

http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html


Web Application Structure
Web applications can be arbitrarily rich, but the core functionality
of most web applications is to manage resources by implementing
four operations:

▶ Create - create a new instance of a resourece (new email
message, new customer account object, etc) - maps to the
HTTP POST method.

▶ Read - read a resource - maps to the HTTP GET method.
▶ Update - modify a resource - maps to the HTTP PUT

method.
▶ Delete - delete a resource - maps to the HTTP DELETE

method.

This paradigm is called “CRUD” and most web frameworks (and
RESTful web services) are structured around these operations. In
our sample application we’ll see a simple way to map these
operations to HTTP methods

4 / 14



Web Application Frameworks

Web frameworks typically provide:
▶ A model-view-controller (MVC) structure

▶ Models house the domain logic
▶ Views house the UI elements
▶ Controllers service web requests, invoking model code and

forwarding to views
▶ Routes, which map URLs to server files or handler code
▶ Templates, which dynamically insert server-side data into

pages of HTML
▶ Authentication and authorization of user names, passwords,

permissions
▶ Sessions, which keep track of a user during a single visit to a

site

and more . . .

5 / 14



Play! Framework

▶ Play! is written
primarily in Scala but
has a Java API as
well.

▶ Play! is built on
Akka, making it
efficient and
limitlessly scalable.

6 / 14

https://akka.io/


Play! Application Overview

7 / 14



Hello, Play!

We’ll create a simple web application from scratch. We’ll see all
the essential parts of a Play! application and how they fit together.

▶ Build files
▶ Directory structure
▶ A view using a Twirl template
▶ A controller using an Action
▶ A route to connect the view and the controller

This tutorial is based on Play’s Hellow World Tutorial but builds
the application from scratch and removes irrelevant details.

8 / 14

https://www.playframework.com/documentation/2.7.x/ImplementingHelloWorld


A Build Configuration for Hello, Play!
Create an empty directory called hello-play. This will be the project
root directory.

▶ In the project root directory create a build.sbt with the
following minimal contents:

1 name := """hello-play"""
2
3 version := "1.0-SNAPSHOT"
4
5 lazy val root = (project in file(".")).enablePlugins(PlayScala)
6
7 resolvers += Resolver.sonatypeRepo("snapshots")
8
9 scalaVersion := "2.12.8"

10
11 libraryDependencies += guice
12
13 scalacOptions ++= Seq(
14 "-feature",
15 "-deprecation",
16 "-Xfatal-warnings"
17 )

9 / 14



A Congfiguration for the Build
In the project root directory, create a project directory. The project

directory contains configuration information for the sbt build.
▶ In the project directory, create two files with the following

contents:

build.properties

1 sbt.version=1.2.8

plugins.sbt

1 addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.7.0")

At this point we should have:
1 ���
2 build.sbt���
3 project���
4 build.properties���
5 plugins.sbt

10 / 14



A Layout for Views
In Play! ciews are typically implemented with Twirl templates.
We’ll create a view in two steps: first we’ll create a layout
template, then a template for rendering the hello page

▶ In the project root directory, create a directory named app/views

▶ In the app/views directory create a file called main.scala.html

with the following contents:
1 @(title: String)(content: Html)
2
3 <!DOCTYPE html>
4 <html lang="en">
5 <head>
6 <title>@title</title>
7 </head>
8 <body>
9 @content

10 </body>
11 </html>

This template provides a shared layout. Other templates that call
this template insert their content inserted into the @content portion
of this template

11 / 14

https://www.playframework.com/documentation/2.7.x/ScalaTemplates


A Template for Hello

▶ In the app/views directory create a file called hello.scala.html

with the following contents:
1 @main("Hello") {
2 <section id="top">
3 <div class="wrapper">
4 <h1>Hello World</h1>
5 </div>
6 </section>
7 }

Notice that this template takes advantage of Scala’s syntactic
flexibility: the first argument list uses parentheses and the second
argument list uses curly braces.

12 / 14



A Controller
In Play!, controllers consist of actions and are housed in the

▶ In the project root directory create a directory named
app/controllers

▶ In the app/controllers directory create a file named
HomeController.scala with the following contents:

1 package controllers
2
3 import javax.inject._
4 import play.api.mvc._
5
6 class HomeController @Inject()(cc: ControllerComponents)
7 (implicit assetsFinder: AssetsFinder)
8 extends AbstractController(cc) {
9 def hello = Action {

10 Ok(views.html.hello())
11 }
12 }

There’s a lot going on here. For now consider all but the body of
the class as boilerplate.

13 / 14



A Route

Play! routes URLs to controller actions via a routes files
configuration.

▶ In the project root directory create a directory named conf

▶ In the conf directory create a file named routes with the
following contents:

1 GET /hello controllers.HomeController.hello

One last thing. Create an empty file at conf/application.conf. Play!
won’t run if it’s not there.

Now you can run your application with sbt:
1 $ sbt run

and see the view in your browser at http://localhost:9000/hello

14 / 14

http://localhost:9000/hello

