
Object-Oriented Programming in Scala

1 / 20

Scala OOP Overview

Mostly like Java with important differences:

I overridden methods must have override modifier, which is part
of the language, not an annotation

I instead of interfaces Scala has traits, which are much richer
I traits can have everything a class can have except constructors
I a class can “mix-in” any number of traits (kinda like multiple

inheritance, but without the “diamond inheritance problem”)
Note: these slides based on examples in Cay Horstmann’s
excellent Scala for the Impatient, 2ed

2 / 20

http://www.informit.com/store/scala-for-the-impatient-9780134540566

Extending Classes

1 class Person(val name: String, val age: Int) {
2 override def toString = s"${getClass.getName}[name=$name]"
3 }
4 class Employee(name: String, age: Int) extends Person(name, age) {
5 var salary: Int = 0.0
6 }

I Person implicitly extends AnyRef (java.lang.Object)
I name and age are parametric fields – constructor parameters that

define instance variables
I Employee’s constructor takes two parameters that are passed to

Person constructor (equivalent to a super() call in a Java
constructor)

3 / 20

Run-time Type Identification

I obj.isInstanceOf[Cl] like obj instanceof Cl in Java
I obj.asInstanceOf[Cl] like (Cl) obj in Java
I classOf[Cl] like Cl.class in Java

4 / 20

Overriding Fields
1 abstract class Person(val name: String) {
2 def id: Int
3 override def toString = s"${getClass.getName}[name=$name]"
4 }
5 class SecretAgent(val id: Int, codename: String)
6 extends Person(codename) {
7 override val name = "secret" // ’Dont want to reveal name . . .
8 override val toString = "secret" // . . . or class name
9 }

I id is abstract in Person because it is not defined (so Person must
be declared abstract, just like in Java)

I SecretAgent overrides id with a val field (could add override

modifier, but not required when overriding abstract member)

Rules

I A def can only override another def
I A val can only override another val or a parameterless def
I A var can only override an abstract var

5 / 20

Scala’s Class Hierarchy

Scala has two “bottom types”

I Null has a single value, null, which is an instance of any class
I Nothing has no instances and is useful in a couple of places:

I Empty list Nil has type List[Nothing], which is a subtype of
List[T] for any T

I AnyRef defines a ??? method with return type Nothing that
simply throws a NotImplementedError when invoked

6 / 20

Equality

Use eq for identity equality (alias test – like == in Java). Similar to
Java, AnyRef’s equals method invokes eq. Override equals like this:

1 class Item(val description: String, val price: Double) {
2 final override def equals(other: Any) = other match {
3 case that: Item => description == that.description && price ==

that.price
4 case _ => false
5 }
6 final override def hashCode = (description, price).##
7 }

I Recipe similar to Java’s, but much more convenient
I Remember parameter type is Any
I Marked final to prevent symmetry problems in subclasses
I ## is a convenience method on tuples which makes defining

hashCode trivial

7 / 20

Companion Objects

Scala doesn’t have “static” members but use cases for static
members can be done with a companion object, which:

I has the same name as its companion class
I must be defined in the same source file as its companion class
I has access to its companion class’s private members (and

vice-versa)

Companion objects are most often used for factory methods:
1 class Item(val description: String, val price: Double)
2
3 object Item {
4 def apply(description: String, price: Double): Item =
5 new Item(description, price)
6 }
7
8 val item = Item("Key Lime", 3.14) // Calls Item.apply

8 / 20

Traits as Interfaces

1 trait Logger {
2 def log(msg: String)
3 }
4 class ConsoleLogger extends Logger {
5 def log(msg: String) = { println(msg) }
6 }

I Pretty much like a Java interface
I extends, not implements

9 / 20

Traits with Concrete Implementations

Traits can have concrete implementations (like default methods in
Java interfaces), so our ConsoleLogger could be a trait:

1 trait ConsoleLogger extends Logger {
2 def log(msg: String) { println(msg) }
3 }

Then we can “mix-in” the trait without having to override any
methods:

1 abstract class SavingsAccount(var balance: Int) extends ConsoleLogger {
2 def withdraw(amount: Int) {
3 if (amount > balance) log("Insufficient funds")
4 else balance -= amount
5 }
6 }

10 / 20

Objects with Traits

We can have SavingsAccount extend the abstract Logger instead of the
concrete ConsoleLogger.

1 abstract class SavingsAccount(var balance: Int) extends Logger {
2 def withdraw(amount: Int) {
3 if (amount > balance) log("Insufficient funds")
4 else balance -= amount
5 }
6 }

You can mix in a trait with a concrete implementation of log at
construction:

1 val acct = new SavingsAccount(1) with ConsoleLogger

This works because SavingsAccount is a subtype of Logger and so is
ConsoleLogger.

11 / 20

Stackable Modifications

Traits can invoke methods in other traits that have a common
supertype declaring the method. The supertype can be abstract,
and the result is that a chain of operations takes place when the
method is called.

1 trait Timestamping extends ConsoleLogger {
2 override def log(msg: String) =

super.log(s"${java.time.Instant.now()} $msg")
3 }
4 trait Shortening extends ConsoleLogger {
5 override def log(msg: String) =
6 super.log(if (msg.length <= 15) msg else s"${msg.substring(0,

12)}...")
7 }

Here, super doesn’t mean “supertype”, it means “trait that was
mixed-in to my left.”

12 / 20

Resolution of super in Stacked Traits (1/2)

For simple mixin sequences you may think of method resolution as
“back to”front". (Note the with syntax when extending multiple
traits.)

1 val acct1 = new SavingsAccount(1) with Timestamping with Shortening
2 acct1.withdraw(2)

In the code above, Shortening is furthest to the right, so its log

method is called with “Insufficient funds”, which, being 18
characters, is passed to the log method in Timestamping so we get
something like

1 2019-02-17T23:28:15.747452Z Insufficient funds

13 / 20

Resolution of super in Stacked Traits (2/2)

Here we mix-in Timestamping last, so its log method is called with
“Insufficient funds”, Timestamping.log prepends a timestamp, then
passes the result to Shortening.log because its to the left of
Timestamping in the mix-in order. So

1 val acct2 = new SavingsAccount(1) with Shortening with Timestamping
2 acct2.withdraw(2)

gives us something like
1 2019-02-17

14 / 20

Abstract Overrides
Because super calls are dynamically bound, you can invoke an
abstract method as long as you mark your method as
abstract override. See the Shouting we’ve added below.

1 trait Timestamping extends ConsoleLogger {
2 override def log(msg: String) =

super.log(s"${java.time.Instant.now()} $msg")
3 }
4 trait Shortening extends ConsoleLogger {
5 override def log(msg: String) =
6 super.log(if (msg.length <= 18) msg else s"${msg.substring(0,

10)}")
7 }
8 trait Shouting extends Logger {
9 abstract override def log(msg: String) =

10 super.log(msg.toUpperCase)
11 }

This is saying “we assume a concrete log method exists.” The
compiler ensures that you can only mix Shouting into a class that
somehow provides a concrete log method.

15 / 20

Compiling Traits with Abstract Overrides

The compiler ensures that the super call will succeed. So this will
compile because Shortening provides a concrete log method (from
ConsoleLogger) for the super call in Shouting

1 val acct3 = new SavingsAccount(1) with Shortening with Shouting
2 acct3.withdraw(2) // => INSUFFICIENT FUNDS

But this will not compile because Shortening’s super call is refferring
to Shouting’s log method, which has no concrete log method for its
super call.

1 // Won't compile
2 val acct4 = new SavingsAccount(1) with Shouting with Shortening
3 acct4.withdraw(2)

The resolution of super is called linearization and it is the (somewhat
complicated) way Scala solves the diamond inheritance problem.

16 / 20

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

Packages

Like Java, Scala code that’s not in a named package is in the global
unnamed package. Put code into packages in two ways:

I Putting a package declaration at top of source code file, like in
Java:

1 package edu.gatech.cs2340.zoo
2
3 class Animal
4 trait Mammal extends Animal
5 class Dog extends Animal with Mammal

and . . .

17 / 20

Namespace Packaging Syntax

I Explicit packaging syntax (like the namespace feature of other
languages):

1 package edu.gatech.cs2340 {
2 package zoo {
3 class Animal
4 trait Mammal extends Animal
5 class Dog extends Animal with Mammal
6 }
7 }

The second approach is flexible but not used much in practice.
Note: although Scala allows you to organize your code any
way you want, be a good person and follow Java’s package
naming (reverse domain name) and source code organi-
zation conventions (source directory tree mirrors package
structure).

18 / 20

Imports

Scala imports are more flexible than Java’s

I import edu.gatech.cs2340.zoo.Animal – import Animal into
namespace as simple name (name without package).

I import edu.gatech.cs2340.zoo.{Animal, Mammal} – import Animal,
Mammal but not Dog into namespace as simple names.

I import edu.gatech.cs2340.zoo._ – import all top-level names in zoo

into namespace as simple names.
I import edu.gatech.cs2340.zoo.Animal._ – import all members of

Animal into namespace as simple names.
I import edu.gatech.cs2340.zoo.{Mammal => FurryCreature} – import

Mammal into namespace but rename to FurryCreature.
I import edu.gatech.cs2340.zoo.{Mammal => _, _} – import everything

from zoo except Mammal.

19 / 20

Conclusion

I OOP in Scala is more consistent, more expressive, more flexible,
and less verbose than in Java

I With great power comes great resonsibility
I Don’t get too crazy with trait mix-ins, whose linearizations can

be difficult to understand
I Stick to Java’s conventions for packages and source file

organization

20 / 20

