
Monads in Scala

1 / 13



Functors

A functor is a container type that supports mapping over its contents.

1

List is functor:

1 List(1, 2, 3).map((x: Int) => x.toString) == List("1", "2", "3")

As a conceptual exercise, we could represent functor with a type:

1 trait Functor[T] {
2 def map[U](f: T => U): Functor[U]
3 }

1Scala with Cats
2 / 13

https://underscore.io/books/scala-with-cats/


Option

Option is also a functor:

1 Some(1).map(x => x.toString) == Some(1)
2 None.map(x => x.toString) == None

We usually first learn map in the context of collections.

1 List(1, 2, 3).map((x: Int) => x.toString) == List("1", "2", "3")

Think of map more generally:
I Given a functor that contains one or more values of type A –

List[A], Option[A], etc
I and a function f: A => B,

map applies f to the contained value(s) to produce a container of the
same type with value(s) of type B.

3 / 13



Nested Container Structure

What if we have a function that transforms an A into a Container[B]

for some container type?

1 def toInt(s: String): Option[Int] = {
2 try {
3 Some(s.toInt)
4 } catch {
5 case _: Throwable => None
6 }
7 }

Then:

1 Some("1").map((s: String) => toInt(s)) == Some(Some(1))
2 Some("one").map((s: String) => toInt(s)) == Some(None)

4 / 13



flatMap

flatMap is like map but
I takes a function of the form f: A => Container[B] and
I removes one level of nesting.

1 Some("1").flatMap((s: String) => toInt(s)) == Some(1)
2 Some("one").flatMap((s: String) => toInt(s)) == None

Again, we typically encounter flatMap in the context of collections:

1 List("RESPECT").map(_.toCharArray) == List(Array("R", "E", "S", "P",
"E", "C", "T"))

2 List("RESPECT").flatMap(_.toCharArray) == List("R", "E", "S", "P", "E",
"C", "T")

But the concept is more general (and in the context of monads is
called bind in FP/category theory).

5 / 13



Monad Definition
In Scala a monad can be conceptualized in the type:

1 trait Monad[T] {
2 def flatMap[U](f: T => Monad[U]): Monad[U]
3 }
4
5 def unit[T](x: T): Monad[T]

In addition, a monad must satisfy these algebraic laws:
I Associativity

1 m.flatMap(f).flatMap(g) == m.flatMap(x => f(x).flatMap(g))

I Left unit

1 unit(x).flatMap(f) == f(x)

I Right unit

1 m.flatMap(unit) == m

6 / 13



Aside: Clearer Associativity

It’s a bit hard to see that

1 m.flatMap(f).flatMap(g) == m.flatMap(x => f(x).flatMap(g))

is an associativity law. For monoids it was much simpler:

1 op(op(x, y), z) == op(x, op(y, z)

We can use a concept from category theory called Kleisli
composition to make it clearer. Kleisli arrows, i.e., monadic
functions like A => F[B]:

1 def compose[A,B,C](f: A => F[B], g: B => F[C]): A => F[C]

Using Kleisli composition the Monad associativity law can be
written as

1 compose(compose(f, g), h) == compose(f, compose(g, h))

7 / 13



Monads in the Scala Standard Library

We already know that there are several monads in the Scala
standard library, e.g.:
I List

I Set

I Option

But there are several other types that Support map and flatMap

operations, e.g.:
I Try

I Future

These aren’t monads because they don’t obey all of the monad laws,
so why do they bother implementing map and flatMap?

8 / 13



Scala for Loops

Recall Scala’s for construct:

1 for (i <- 1 to 5) {
2 val dub = i * 2
3 println(dub)
4 }

I i <- coll is a generator expression. i is a new val successively
assigned values from coll in each iteration.

Any container type with a foreach method can be used in the
imperative for loop. These are equivalent:

1 Some(1).foreach(println)
2 for (x <- Some(1)) println(x)

9 / 13



Scala for Comprehensions

Any container type with a map method can be used in a
single-generator for comprehension. These are equivalent:

1 Some(1).map(_ + 1)
2 for (x <- Some(1)) yield x + 1

Any container type with a flatMap method can be used in a
mulitple-generator for comprehension. These are equivalent:

1 val sum = for {
2 a <- toInt("1")
3 b <- toInt("2")
4 c <- toInt("3")
5 } yield a + b + c
6 sum == Some(6)

10 / 13



De-Sugaring for Comprehensions

Scala’s for is actually syntax sugar for higher-order methods on
container types.

1 for {
2 a <- toInt("1")
3 b <- toInt("2")
4 c <- toInt("3")
5 } yield a + b + c

Is converted by the Scala compiler to:

1 toInt("1").flatMap(a =>
2 toInt("2").flatMap(b =>
3 toInt("3").map(c =>
4 a + b + c)))

Most people find the for comprehension syntax (which is inspired by
Haskell’s do-notation) much clearer.

11 / 13



Try

Remember Try?

1 import scala.util.Try
2 import scala.io.StdIn.readLine
3
4 val answer = for {
5 x <- Try { readLine("x: ").toInt }
6 y <- Try { readLine("y: ").toInt }
7 } yield x + y

12 / 13



More . . .

to come.

13 / 13


