
Scala Functions

1 / 25

Basic Function Definition

Figure 1: Scala Basic Function Definition, Programming in Scala, 3ed,
page 69

2 / 25

Functions Return Values

Notice the mandatory = between the “header” and “body”

1 def double(x: Int): Int = 2 * x

I Also notice that you don’t need {} if body is single expression
A function that doesn’t return a useful value is called a procedure
and returns the special value () of type Unit. Style guide says
always annotate return type of procedures

1 def say(something: String): Unit = {
2 println(something)
3 }

3 / 25

Local Functions

You can nest functions within functions. Here iter can only be called
within facIter

1 def facIter(n: BigInt): BigInt = {
2 def iter(i: BigInt, accum: BigInt): BigInt =
3 if (i <= 1) accum
4 else iter(i - 1, i * accum)
5 require(n >= 0, "Factorial defined for non-negative integers")
6 iter(n, 1)
7 }

require takes a Boolean expression and an optional String description.
If Boolean expression is false, throws an IllegalArgumentException with
the description as the exception message

4 / 25

Functions are First Class

First class values in a programming language can be
I stored in variables
I passed as arguments to functions, and
I returned from functions

5 / 25

Function Literals

Just as other types have literal values, function values can be
created with literals

1 val doubleFun: Int => Int = {(x: Int) => {2 * x}}

I Notice the type annotation. doubleFun is a function with a
domain of Int and codomain of Int

Above is full literal notation. What can be inferred can be left off.
Could be written as

1 val doubleFun:Int => Int = x => 2 * x

or

1 val doubleFun = (x: Int) => 2 * x

6 / 25

Higher-Order Functions

I A first order function takes non-function value parameters and
returns a non-function value

I A higher-order function takes function value parameters or
returns a function value

I Function literals are most useful as arguments to higher-order
functions List.filter takes a function of one parameter of the
list’s element type and returns a Boolean

1 val evens = List(1,2,3,4,5,6,7,8).filter(x => x % 2 == 0)

If each parameter appears once in the function literal’s body, can
use placeholder syntax

1 val evens2 = List(1,2,3,4,5,6,7,8).filter(_ % 2 == 0)

7 / 25

Repeated Parameters

Repeated parameters, or “var-args” parameters, are annotated with
a * after the type

1 def max(x: Int, xs: Int*): Int = { xs.foldLeft(x)((x, y) => if (x > y)
x else y)

2 }

Must pass a multiple single arguments to a repeated parameter

1 val varArgsMax = max(3, 5, 7, 1)

I In application of max above, x is 3, xs is Array(5, 7, 1)

To pass a sequence to a varargs parameter, use : _*

1 val seqMax = max(0, List(2, 4, 6, 8, 0): _*)

8 / 25

Functional Function Evaluation

The result of a pure function depends only on its inputs
A pure function is referentially transparent, i.e., a function
application can be replaced with the value it produces without
changing the meaning of the program
Application of pure functions to their arguments can be understood
with the substitution model of evaluation:
1. Evaluate arguments left to right
2. Replace function call with function body, substituting

arguments for parameters in body

9 / 25

Recursive Function Evaluation
1 def fac(n: Int): Int = if (n <= 1) 1 else n * fac(n - 1)

Applying the steps of applicative-order evaluation gives:
[5/n]fac(n) ([v1/p1, ...vn/pn]expr means substitute vi for pi in expr)
I => fac(5)
I => 5 * fac(4)
I => 5 * 4 * fac(3)
I => 5 * 4 * 3 * fac(2)
I => 5 * 4 * 3 * 2 * fac(1)
I => 5 * 4 * 3 * 2 * 1
I => 5 * 4 * 3 * 2
I => 5 * 4 * 6
I => 5 * 24
I => 120

Notice the expanding-contracting pattern. This mirrors stack usage
– calling fac with a large argument will overflow the stack

10 / 25

Iterative Recursive Functions Evaluation

Recursive calls in tail position are turned into loops (only one stack
frame is used). This is called tail call optimization
facIter uses an iterative local function whose recursive call is in tail
position

1 def facIter(n: BigInt): BigInt = {
2 def iter(i: BigInt, accum: BigInt): BigInt =
3 if (i <= 1) accum
4 else iter(i - 1, i * accum)
5 iter(n, 1)
6 }

11 / 25

Iterative Recursive Functions Evaluation

1 def facIter(n: BigInt): BigInt = {
2 def iter(i: BigInt, accum: BigInt): BigInt =
3 if (i <= 1) accum
4 else iter(i - 1, i * accum)
5 iter(n, 1)
6 }

[5/n]facIter(n)
I => iter(5, 1)

[5/i, 1/accum]iter(i, accum)
I => iter(5, 1)
I => iter(4, 5)
I => iter(3, 20)
I => iter(2, 60)
I => iter(1, 120)
I => 120

% Scala Functional Abstraction
12 / 25

Functional Lists

Scala’s list type has an API familiar to Java programmers, and an
API modeled on the original cons list in Lisp, which is an elegant
representation of linked lists. Recall that one way to create a list in
Scala is to use the :: operator (pronounced “cons”):

1 scala> var xs = 1::Nil
2 xs: List[Int] = List(1)
3
4 scala> xs = 2::xs
5 xs: List[Int] = List(2, 1)
6
7 scala> xs = 3::xs
8 xs: List[Int] = List(3, 2, 1)

Notice that you add elements to the head of the list. The special
value Nil represents an empty node which signals the end of the list,
which you can also think of as a list with no elements because it
contains on value and doesn’t point to a successor node.

13 / 25

Linked List Structure

The code on the previous slide produces a list that looks like:

Figure 2: A singly-linked list.

Each node is a cons cell that contains an element, and a link to the
rest of the list. The head and tail methods return these two
components of the first cons cell in the list.

1 scala> xs.head
2 res2: Int = 3
3
4 scala> xs.tail
5 res3: List[Int] = List(2, 1)

14 / 25

The End of the List

I isEmpty is equivalent to comparison to Nil.

1 scala> val leer = List()
2 leer: List[Nothing] = List()
3
4 scala> leer.isEmpty
5 res4: Boolean = true
6
7 scala> leer == Nil
8 res5: Boolean = true

15 / 25

Functional List Idioms

A common functional idiom for processing a List uses only
I the three primary first-order methods head, tail, and isEmpty
I if expressions, and
I recursion

Here’s a function to generate a String representation of a list:

1 def listToString[T](list: List[T]): String = {
2 def toStringHelper(list: List[T], accum: String): String =
3 // Nil is the end of a list, base case for recursion
4 if (list == Nil) accum
5 // Recurse on the tail of the list, accumulate result
6 else toStringHelper(list.tail, accum + list.head)
7 toStringHelper(list, "")
8 }

As an exercise, use the substitution model to evaluate
listToString(List("R", "E", "S", "P", "E", "C", "T")) with pencil and
paper.

16 / 25

Function Values

Function values, like all values in Scala, are instances of classes.
Function1, . . . , Function22 [ˆ1]
[ˆ1] The FunctionN classes and the 22 limit are going away in Scala
3.

17 / 25

Closures

1 def makeDecorator(
2 leftBrace: String,
3 rightBrace: String): String => String =
4 (middle: String) => leftBrace + middle + rightBrace
5
6 val squareBracketer = makeDecorator("[", "]")

In the function literal

1 (middle: String) => leftBrace + middle + rightBrace

I middle is bound variable because it’s in the parameter list
I leftBrace and rightBrace are free variables

A function literal with only bound variables is called a closed term.
A function literal with free variables is called an open term becuase
values for the free variables must be captures from an enclosing
environment, thereby closing the term.

18 / 25

Abstractions with Higher-order Functions

I

19 / 25

Partial Application

20 / 25

Partially Applied Functions

A def is not a function value.

1 def dubbel(x: String): String = s"two ${x}s"
2
3 // Won't compile because dubbel is not a function value
4 val wontCompile = dubbel

To turn the dubbel method in to a Function value, partially apply it

1 val dubbelFun = dubbel _

Don’t forget the space between the name of the function and the
underscore.
The partial function application above is equivalent to:

1 val dubbelFun = (x: String) => dubbel(x)

21 / 25

Partial Function Short Forms

You can leave off the underscore if target type is a function. These
three are equivalent

1 List("Honey", "Boo", "Boo").foreach(x => print(x))
2 List("Honey", "Boo", "Boo").foreach(print _)
3 List("Honey", "Boo", "Boo").foreach(print)

I The third example above works because foreach takes a
function value, so print is lifted to a function (another term for
partial function application)

Note that this form is not technically a partially applied function,
it’s just a short-form of a function literal using placeholder syntax:

1 List("Honey", "Boo", "Boo").foreach(print(_))

22 / 25

Schönfinkeling, a.k.a., Currying

Scala syntax for curried functions: multiple param lists

1 def curry(chicken: String)(howard: String): String =
2 s"Love that $chicken from $howard!"

Above is equivalent to:

1 def explicitCurry(chicken: String): String => String =
2 (howard: String) => s"Love that $chicken from $howard!"

You can partially apply second parameter list to get another function

1 val eleganceFrom = curry("elegence")_
2 eleganceFrom("provability")

23 / 25

Control Abstraction with Higher-Order Functions

I

24 / 25

By-Name Parameters

I

25 / 25

