Functional Error Handling

Georgia
Tech

1/12

What's right with exceptions?

Exceptions provide

P> a way to consolidate error handling code and separate it from
main logic, and

P an alternative to APlIs that require callers of functions to know
error codes, sentinal values, or calling protocols.

We can preserve both of these advantages while avoiding the
disadvantages of exceptions.

Georgia
Tech

27 /12

What's wrong with exceptions?

Exceptions

» break referential transparency,
> are not type-safe, and
» functions that throw excpetions are partial.

Also, exception syntax is a pain.

Georgia
Tech

2/12

Exceptions break referential transparency.

©CO~NOOOU A WN -

CO~NOOTHAWNH

def failingFn(i: Int): Int = {
val y: Int = throw new Exception("fail!")

try {
val x = 42 + 5
X +y
} catch {
case e: Exception => 43
}
}

If y were referentially transparent, then we should be able to
substitute the value it references:

def failingFn2(i: Int): Int = {
try {
val x = 42 + 5
x + ((throw new Exception("fail!")): Int)
} catch {
case e: Exception => 43
}
}

But failingFn2 returns a different result for the same input.

Geor
Te

ia
Zh

a4/12

Type-safety and Partiality

def mean(xs: Seq[Double]): Double =
if (xs.isEmpty)
throw new ArithmeticException("mean of empty list undefined")
else
xs.sum / xs.length

GO WN =

mean(Seq(1,2,3)) returns a value, but mean(seq()) throws an exception

» The type of the function, seq[Double]l => Double, does not convey
the fact that an exception is thrown in some cases.
P nean is not defined for all values of seq[boubie].

In practice, partiality is common, so we need a way to deal with it.

Georgia
Tech

5/12

Functional Error Handling in the Scala Standard Library

The Scala standard library defines three useful algebraic data types
for dealing with errors:

P option, Which represents a value that may be absent,

P Either, Which represents two mutually-exclusive alternatives,
and

» Try, which represents success and failure

Note: Chapter 4 of Functional Programming in Scala defines its
own parallel versions of option and Either, but we'll use the standard

library versions. For a deeper understanding do the exercises in the
book.

Georgia
Tech

6/12

https://www.manning.com/books/functional-programming-in-scala

The Option Type

We've seen option before:

[uny

sealed abstract class Option[+A]
final case class Some[+A] (value: A) extends Option[A]
3 | case object None extends Option[Nothing]

N

Using option, mean becomes

1 | def mean(xs: Seq[Doublel): Option[Double] =
2 if (xs.isEmpty) None
3 else Some(xs.sum / xs.length)

Georgia
Tech

7 /12

Optionys Definition

option defines many methods that mirror methods on Traversabies.

1 | sealed abstract class Option[+A] {

2 def isEmpty: Boolean

3 def get: A

4

5 final def getOrElse[B >: A](default: => B): B =
6 if (isEmpty) default else this.get

7

8 final def map[B](f: A => B): Option[B] =

9 if (isEmpty) None else Some(f(this.get))
10
11 final def flatMap[B](f: A => Option[B]): Option[B] =
12 if (isEmpty) None else f(this.get)
13
14 final def filter(p: A => Boolean): Option[A] =
15 if (isEmpty || p(this.get)) this else None
16 |}

The key consequence is that you can treat option as a collection,
leading to Scala’s idioms for handling optional values. Gegrgia

Q /12

https://www.scala-lang.org/api/2.12.8/scala/collection/Traversable.html

Option Exam p|es

case class Employee(name: String, department: String)

def lookupByName(name: String): Option[Employeel = //

O WN =

val joeDepartment: Option[String]l =
lookupByName ("Joe") .map(_.department)

Joe's dept. if Joe is
an employee
lookupByName ("Joe") .map (_.department)

None if Joe is not
an employee

Some(manager)
if Joe has a

lookupByName ("Joe") . flatMap (_.manager) manager

None if Joe is not
an employee or
doesn’t have a
manager

Joe’s department if

he has one Georgia
d o

\ "Default Dept."

if not 0/12

lookupByName ("Joe") .map (_.department) .getOrElse ("Default Dept.")

Option Idioms

case class Employee(name: String, department: String)

def lookupByName(name: String): Option[Employee] = // ...

O~ WN =

val joeDepartment: Option[String] =
lookupByName ("Joe") .map(_.department)

val dept: String =
lookupByName ("Joe") .
map(_.dept) .
filter(_ != "Accounting").
getOrElse("Default Dept")

g s W

The getorElse at the end returns "pefault Dept" if Joe doesn't have a
department, or if Joe's department is not "Accounting".

Georgia
Tech

10 /12

Dealing with Exception-Oriented APls

O~ WN -

~N o

scala> import scala.util.Try
import scala.util.Try

scala> Try { "foo".toInt }
resl: scala.util.Try[Int] = Failure(java.lang.NumberFormatException:
For input string: "foo")

scala> Try { "1".toInt }
res2: scala.util.Try[Int] = Success(1)

Georgia
Fozh

11 /12

EitherS

a s W

N =

Return error message on failure:

def mean(xs: IndexedSeq[Double]): Either[String, Double] =
if (xs.isEmpty)
Left("mean of empty list!")
else
Right(xs.sum / xs.length)

Return the exception itself on failure:

def safeDiv(x: Int, y: Int): Either[Exception, Int] =
try Right(x / y)
catch { case e: Exception => Left(e) }

Georgia
Tech

12 /12

Closing Thoughts

Rule of thumb: only throw exceptions exceptions in cases where the
program could not recover from the exception by catching it.

Georgia
Tech

12/12

