
Scala Collections

1 / 20

Scala Collections

Figure 1: Abstract classes and traits in scala.collection

From https://docs.scala-lang.org/overviews/collections-
2.13/overview.html

2 / 20

https://docs.scala-lang.org/overviews/collections-2.13/overview.html
https://docs.scala-lang.org/overviews/collections-2.13/overview.html

Immutable Collections

Figure 2: Immutable collections in scala.collection.immutable

3 / 20

Mutable Collections

Figure 3: Mutable collections in scala.collections.mutable

4 / 20

Type Aliases in scala and scala.Predef

scala.Predef provides type aliases for commonly used collections,
such as List (and constructors :: and Nil), Set, and Map.

scala provides type aliases for IndexedSeq, Seq, Iterable (and Iterator)
and Vector.

All of these alias to collections in scala.collection.immutable, so these
companion object factories create immutable collections:

1 Iterable("x", "y", "z")
2 List(1, 2, 3)
3 Vector(1, 2, 3)
4 Seq(1.0, 2.0)
5 IndexedSeq(1.0, 2.0)
6 Set(1, 2, 3)
7 Map("x" -> 24, "y" -> 25, "z" -> 26)

5 / 20

Collection-like Classes in scala

The scala package contains collection-like classes which are not part
of the collections framework: Array and the TupleN classes.

Arrays are mutable fixed-sized Sequences of like-typed elements
which map one-to-one with Java arrays, except Scala arrays are
generic.

1 val zs: Array[Int] = Array(1, 2, 3)
2 zs(0) = 42
3 zs == Array(42, 2, 3)

6 / 20

Tuples
A tuple is an immutable fixed-size collection of values of mixed
types. The Tuple companion object factory method creates instances
of classes named Tuple1 through Tuple22, so the largest tuple you can
create is 22 elements in size.

Tuples are about convenience:
1 val dog = ("Chloe", 6)
2 dog._1 == "Chloe"
3 dog._2 == 6
4 val (name, age) = dog
5 name == "Chloe"
6 age == 6

Be careful: if you leave off the parenthesis you don’t get
destructuring bind:

1 val name, age = dog
2 name == ("Chloe", 6)
3 age == ("Chloe", 6)

7 / 20

Idiomatic Functional Lists

List construction:
1 val nums: List[Int] = List(1, 2, 3, 4)
2
3 val leer = Nil // Nil is an empty list constant
4 val vide = List()

Lists are homogeneous (elements have same type) and generic.

I List is not a type – no raw collections in Scala
I List[T] is a generic type, or type constructor
I List[Int] is a type because an argument for T is provided

Due to type inference, these are equivalent:
1 val nums = List(1, 2, 3, 4)
2 val nums: List[Int] = List[Int](1, 2, 3, 4)

8 / 20

Basic List Operations

Given xs == List(1,2,3),

I xs.head returns the first element of a list: 1

I xs.tail returns a list consisting of all elements except the first:
List(2,3)

I xs.isEmpty returns true if the list is empty: false

Using these basic operations and functional list idioms, we can
implement insertion sort as:

1 def insertionSort(xs: List[Int]): List[Int] =
2 if (xs.isEmpty) Nil
3 else insert(xs.head, insertionSort(xs.tail))
4
5 def insert(x: Int, xs: List[Int]): List[Int] =
6 if (xs.isEmpty || x <= xs.head) x :: xs
7 else xs.head :: insert(x, xs.tail)

9 / 20

List Patterns

The List constructor can be used for a destructuring bind:
1 scala> val List(a, b, c) = List("apples", "bananas", "kiwis")
2 a: String = apples
3 b: String = bananas
4 c: String = kiwis

Recall that you can “cons” an element to the head of a list, so the
list above could be constructed like:

1 scala> val fruits = "apples"::"bananas"::"kiwis"::Nil
2 fruits: List[String] = List(apples, bananas, kiwis)

10 / 20

consing Lists

Recall that :: is a method that associates to the right, that is, it’s
invoked on its right operand.

1 scala> val head = "apple"
2 head: String = apple
3
4 scala> val tail = List("bananas", "kiwis")
5 tail: List[String] = List(bananas, kiwis)
6
7 scala> head::tail
8 res0: List[String] = List(apple, bananas, kiwis)
9

10 scala> tail.::(head)
11 res1: List[String] = List(apple, bananas, kiwis)

11 / 20

Pattern Matching on List Structure

Scala allows infix operators like :: to be used in pattern matches.
So we could rewrite insertion sort as:

1 def insertionSort(xs: List[Int]): List[Int] = xs match {
2 case List() => List()
3 case h :: t => insert(h, insertionSort(t))
4 }
5 def insert(x: Int, xs: List[Int]): List[Int] = xs match {
6 case List() => List(x)
7 case h :: t => if (x <= h) x :: xs else h :: insert(x, t)
8 }

When you read list pattern matching code in functional languages
read h as “head” and t as “tail”.

Now let’s look at the most general collections operations: those
defined on Iterable

12 / 20

Size-related Methods on Iterable

I xs.isEmpty Tests whether the collection is empty.
I xs.nonEmpty Tests whether the collection contains elements.
I xs.size The number of elements in the collection.
I xs.knownSize The number of elements, if this one takes constant

time to compute, otherwise -1.
I xs.sizeCompare(ys) Returns a negative value if xs is shorter than

the ys collection, a positive value if it is longer, and 0 if they
have the same size. Works even if the collection is infinite, for
example LazyList.from(1) sizeCompare List(1, 2) returns a
positive value.

I xs.sizeCompare(n) Returns a negative value if xs is shorter than
n, a positive value if it is longer, and 0 if it is of size n. Works
even if the collection is infinite, for example LazyList.from(1)
sizeCompare 42 returns a positive value.

I xs.sizeIs < 42, xs.sizeIs != 42, etc. Provides a more convenient
syntax for xs.sizeCompare(42) < 0, xs.sizeCompare(42) != 0,
etc., respectively.

13 / 20

Element Retrieval Methods on Iterable

I xs.head The first element of the collection (or, some element, if
no order is defined).

I xs.headOption The first element of xs in an option value, or
None if xs is empty.

I xs.last The last element of the collection (or, some element, if
no order is defined).

I xs.lastOption The last element of xs in an option value, or None
if xs is empty.

14 / 20

Subcollection Methods on Iterable

I xs.tail The rest of the collection except xs.head.
I xs.init The rest of the collection except xs.last.
I xs.slice(from, to) A collection consisting of elements in some

index range of xs (from from up to, and excluding to).
I xs take n A collection consisting of the first n elements of xs

(or, some arbitrary n elements, if no order is defined).
I xs drop n The rest of the collection except xs take n.
I xs takeWhile p The longest prefix of elements in the collection

that all satisfy p.
I xs dropWhile p The collection without the longest prefix of

elements that all satisfy p.
I xs takeRight n A collection consisting of the last n elements of

xs (or, some arbitrary n elements, if no order is defined).
I xs dropRight n The rest of the collection except xs takeRight n.
I xs filter p The collection consisting of those elements of xs

that satisfy the predicate p.
I xs withFilter p A non-strict filter of this collection. Subsequent

calls to map, flatMap, foreach, and withFilter will only apply to
those elements of xs for which the condition p is true.

I xs filterNot p The collection consisting of those elements of xs
that do not satisfy the predicate p.

15 / 20

Mapping Methods on Iterable

I xs map f The collection obtained from applying the function f to
every element in xs.

I xs flatMap f The collection obtained from applying the
collection-valued function f to every element in xs and
concatenating the results.

I xs collect f The collection obtained from applying the partial
function f to every element in xs for which it is defined and
collecting the results.

16 / 20

Folding Methods on Iterable

I xs.foldLeft(z)(op) Apply binary operation op between successive
elements of xs, going left to right and starting with z.

I xs.foldRight(z)(op) Apply binary operation op between
successive elements of xs, going right to left and ending with z.

I xs reduceLeft op Apply binary operation op between successive
elements of non-empty collection xs, going left to right.

I xs reduceRight op Apply binary operation op between successive
elements of non-empty collection xs, going right to left.

Convenience Folds

I xs.sum The sum of the numeric element values of collection xs.
I xs.product The product of the numeric element values of

collection xs.
I xs.min The minimum of the ordered element values of collection

xs.
I xs.max The maximum of the ordered element values of

collection xs.
I xs.minOption Like min but returns None if xs is empty.
I xs.maxOption Like max but returns None if xs is empty.

17 / 20

Zipping Methods on Iterable

I xs zip ys A collection of pairs of corresponding elements from
xs and ys.

I xs.zipAll(ys, x, y) A collection of pairs of corresponding
elements from xs and ys, where the shorter sequence is
extended to match the longer one by appending elements x or y.

I xs.zipWithIndex An collection of pairs of elements from xs with
their indices.

18 / 20

Conversion Methods on Iterable

I xs.toArray Converts the collection to an array.
I xs.toList Converts the collection to a list.
I xs.toIterable Converts the collection to an iterable.
I xs.toSeq Converts the collection to a sequence.
I xs.toIndexedSeq Converts the collection to an indexed sequence.
I xs.toSet Converts the collection to a set.
I xs.toMap Converts the collection of key/value pairs to a map. If

the collection does not have pairs as elements, calling this
operation results in a static type error.

I xs.to(SortedSet) Generic conversion operation that takes a
collection factory as parameter.

19 / 20

Sets and Maps
Sets are immutable by default, so we “add” to them with
reassignment

1 var trooperSet = Set("Thorny", "Farva", "Mac", "Mac")
2 trooperSet == Set("Thorny", "Farva", "Mac")
3 trooperSet += "Rabbit"
4 trooperSet.contains("Rabbit")

Map elements created with 2-tuples, which are usually created with
->

1 var majors = Map(
2 ("CS", "Computer Science"),
3 "CM" -> "Computational Media",
4 "EE" -> "Electrical Engineering"
5)
6 majors += "IE" -> "Industrial Engineering"
7 majors("IE")
8 majors.getOrElse("AA", "Unknown Major")

-> uses implicit conversion to create Tuple2 instances.

20 / 20

