
Case Classes and Pattern Matching

1 / 26



Case Classes

Making a class a case class automatically adds conveniences.
1 case class Var(name: String)
2 case class BinOp(operator: String, left: Var, right: Var)

I Defines a factory method so you don’t need new Var(...)
I Makes all constructor parameters val fields
I Defines structural equals and hashCode methods
I Defines a copy method with default parameters for each field

1 val x = Var("x")
2 x.name // x
3 x == Var("x") // true
4 x != Var("y") // true
5 x.hashCode == Var("x").hashCode // true
6 val plus = BinOp("+", x, Var("y"))
7 val minus = plus.copy(operator = "-")
8 minus == BinOp("-", x, Var("y")) // true

2 / 26



Case Classes for Models

Because of their conveniences, case classes are often used for model
objects. From play-scala-forms-example:

1 package models
2
3 /**
4 * Presentation object used for displaying data in a template.
5 *
6 * Note that it's a good practice to keep the presentation DTO,
7 * which are used for reads, distinct from the form processing DTO,
8 * which are used for writes.
9 */

10 case class Widget(name: String, price: Int)

3 / 26



Pattern Matching
Case classes are powerful when combined with pattern matching.
Given this family of case classes representing arithmetic expressions:

1 abstract class Expr
2 case class Var(name: String) extends Expr
3 case class Number(num: Double) extends Expr
4 case class UnOp(operator: String, arg: Expr) extends Expr
5 case class BinOp(operator: String, left: Expr, right: Expr) extends Expr

we can simplify expressions easily with pattern matching:
1 def simplifyTop(expr: Expr): Expr = expr match {
2 case UnOp("-", UnOp("-", e)) => e // Double negation
3 case BinOp("+", e, Number(0)) => e // Adding zero
4 case BinOp("*", e, Number(1)) => e // Multiplying by one
5 case _ => expr
6 }
7 val doubleNegX = simplifyTop(UnOp("-", UnOp("-", x)))
8 x == doubleNegX // true

Imagine doing this with the visitor pattern (which we’ll learn later).

4 / 26



match Expressions with Case Classes

1 def simplify(expr: Expr): Expr = expr match {
2 case UnOp("-", UnOp("-", e)) => e // Double negation
3 case BinOp("+", e, Number(0)) => e // Adding zero
4 case BinOp("*", e, Number(1)) => e // Multiplying by one
5 case _ => expr
6 }

I General form: selector match { alternatives }
I Alternatives: pattern => expression
I Selector is matched against each pattern sequentially until a

match is found.
I Expression corresponding to matched pattern is evaluated and

returned as value of the match expression
I No fall through to subsequent alternatives
I _ is used as a default if no other patterns match

5 / 26



Kinds of Patterns

The next few slides will summarize the kinds of patterns that may
appear in alternatives:

I Wildcard patterns
I Constant patterns
I Variable patterns
I Constructor patterns
I Sequence patterns
I Tuple patterns
I Typed patterns
I Variable binding

6 / 26



Wildcard Patterns

Wildcard pattern matches any object. Can be used for defaults:
1 expr match {
2 case BinOp(op, left, right) => println(expr + " is a BinOp")
3 case _ => // handle the default case
4 }

. . . or to ignore parts of patterns:
1 expr match {
2 case BinOp(_, _, _) => println(expr + " is a BinOp")
3 case _ => println("It's something else")
4 }

7 / 26



Constant Patterns

Constant patterns match their values:
1 def describe(x: Any) = x match {
2 case 5 => "five"
3 case true => "truth"
4 case "hello" => "hi!"
5 case Nil => "the empty list"
6 case _ => "something else"
7 }
8 describe(5) // five
9 describe(true) // truth

10 describe("hello") // hi!
11 describe(Nil) // the empty list
12 describe(List(1,2,3)) // something else

8 / 26



Variable Patterns

Variable patterns match any object, like a widlcard, but bind the
variable name to the object:

1 expr match {
2 case 0 => "zero"
3 case somethingElse => "not zero: " + somethingElse
4 }

Some constants look like variables but aren’t.
1 import math.{E, Pi}
2
3 val res = E match {
4 case Pi => "strange math? Pi = " + Pi
5 case _ => "OK"
6 }
7 res == "OK" // true

Because Pi in the first pattern is a constant, not a variable.

9 / 26



Variable-Constant Disambiguation

Simple names starting with lowercase letters treated as variable
patterns. Here pi is a variable pattern, not a constant:

1 val pi = math.Pi
2 val strange = E match {
3 case pi => "E is " + pi
4 }
5 strange.substring(0,10) == "E is 2.718" // true

In fact, with a variable pattern like this you can’t even add a default
alternative because the variable pattern is exhaustive:

1 val strange = E match {
2 case pi => "E is " + pi
3 case _ => "OK"
4 }

would result in an “unreachable code” error.

10 / 26



Constructor Patterns

1 expr match {
2 case BinOp("+", e, Number(0)) => println("a deep match")
3 case _ =>
4 }

I A constructor pattern consists of a name and patterns within
parentheses

I Name should be the name of a case class, the names in
parentheses can be any kind of pattern (including other case
classes!)

I Nesting permits powerful deep matches

11 / 26



Sequence Patterns

Match a list of length three with 0 as first element and return
second element as the value of the match expression:

1 val xs = List(0,2,4)
2
3 val two = xs match {
4 case List(0, e, _) => e
5 case _ => null
6 }
7 two == 2 // true

Match a list of any length greater than 1 with 0 as first element and
return second element as the value of the match expression:

1 expr match {
2 case List(0, e, _*) => e
3 case _ => null
4 }

12 / 26



Tuple Patterns

1 def tupleDemo(expr: Any) = expr match {
2 case (a, b, c) => "matched " + a + b + c
3 case _ =>
4 }
5 val threeTuple = tupleDemo(("ein ", 3, "-Tupel"))
6 val nichts = tupleDemo((2, "-Tupel"))

13 / 26



Typed Patterns

1 def generalSize(x: Any) = x match {
2 case s: String => s.length
3 case m: Map[_, _] => m.size
4 case _ => -1
5 }
6 generalSize("abc") // 3
7 generalSize(Map(1 -> 'a', 2 -> 'b')) // 2
8 generalSize(math.Pi) // -1

Patterns can’t inspect type arguments because they are erased. So
Map[_,_] just means any Map, but you still need the Map[_,_] because
Map has type parameters (no “raw” collections in Scala).

Arrays are different . . .

14 / 26



Matching Array Types

1 def arrayTest(a: Any) = a match {
2 case ints: Array[Int] => "ints"
3 case strs: Array[String] => "strs"
4 case _ =>
5 }
6 arrayTest(Array(1,2,3)) // ints
7 arrayTest(Array("a","b","c")) // strs

Note that the parameter type of arrayTest must be Any, not
Array[Any] becuase arrays are invariant. We’ll learn what that means
in a few lectures.

15 / 26



Variable Binding

In addition to simple variable binding, you can bind a variable to a
matched nested pattern using variable @ before the pattern:

1 expr match {
2 case UnOp("abs", e @ UnOp("abs", _)) => e
3 case _ =>
4 }

The code above matches double applications of the abs operator
and simplifies them by returning an equivalent single aplication
(which is just the inner pattern).

16 / 26



Pattern Guards

What if we wanted to convert an addition of a number to itself to a
multiplication of the number by two? Can’t do it with only
syntactic pattern matching:

1 def simplifyAdd(e: Expr) = e match {
2 case BinOp("+", x, x) => BinOp("*", x, Number(2))
3 case _ => e
4 }

I Above fails because x is defined twice.

Pattern guards allow us to add simple semantic checks to patterns:
1 def simplifyAdd(e: Expr) = e match {
2 case BinOp("+", x, y) if x == y => BinOp("*", x, Number(2))
3 case _ => e
4 }

17 / 26



Match Errors

Given our current Expr classes, this code produces a scala.MatchError

at run-time:
1 def describe(e: Expr): String = e match {
2 case Number(_) => "a number"
3 case Var(_) => "a variable"
4 }
5 describe(BinOp("+", Var("x"), Number(1)))

We can turn that into a compile-time warning by sealing our Expr

classes.

18 / 26



Sealed Case Classes
Sealed case classes must all be defined in the same source file.
Simply add sealed in front of superclass:

1 sealed abstract class Expr
2 case class Var(name: String) extends Expr
3 case class Number(num: Double) extends Expr
4 case class UnOp(operator: String, arg: Expr) extends Expr
5 case class BinOp(operator: String, left: Expr, right: Expr) extends Expr

Now simply defining this function:
1 def describe(e: Expr): String = e match {
2 case Number(_) => "a number"
3 case Var(_) => "a variable"
4 }

results in a Warning: match may not be exhaustive. If you know for sure
that describe will only ever be called with Number or Var, you can shut
compiler up with:

1 def describe(e: Expr): String = (e: @unchecked) match { ... }

19 / 26



The Option Type
Takes the form Option[T] and has two values:

I Some(x) where x is a value of type T, or
I None, an object which represents a missing value.

Typically used with pattern matching. The get method on Map
returns an Option[T]:

1 scala> val capitals = Map("France" -> "Paris", "Japan" -> "Tokyo")
2 scala> def show(x: Option[String]) = x match {
3 case Some(s) => s
4 case None => "?"
5 }
6 scala> show(capitals get "Japan")
7 res25: String = Tokyo
8 scala> show(capitals get "North Pole")
9 res27: String = ?

Better than returning null. For example, Java’s collections, you
have to remember which methods may return null’s, where in Scala
this is made explicit and checked by the compiler.

20 / 26



Destructuring Binds

Similar to “tuple unpacking assignment” in Python:
1 scala> val (number, string) = (123, "abc")
2 number: Int = 123
3 string: String = abc

But more general:
1 scala> val exp = new BinOp("*", Number(5), Number(1))
2 exp: BinOp = BinOp(*,Number(5.0),Number(1.0))
3
4 scala> val BinOp(op, left, right) = exp
5 op: String = *
6 left: Expr = Number(5.0)
7 right: Expr = Number(1.0)

21 / 26



Patterns in for Expressions

Can use a destructuring bind in a for expression:
1 scala> for ((country, city) <- capitals)
2 println(s"The capital of $country is $city")
3 The capital of France is Paris
4 The capital of Japan is Tokyo

Constructor patterns provide simple filtering:
1 scala> val results = List(Some("apple"), None, Some("orange"))
2 results: List[Option[String]] = List(Some(apple), None, Some(orange))
3
4 scala> for (Some(fruit) <- results) println(fruit)
5 apple
6 orange

Imagine writing that loop with explicit null checks.

22 / 26



Defining Functions with Case Sequences

A sequence of cases can be used anywhere a function literal can be
used because a case sequence is a special kind of function literal.

I Each case is an entry point with its own list of parameters
specified by the pattern.

I The body of each entry point is the right-hand side of the case.
1 val withDefault: Option[Int] => Int = {
2 case Some(x) => x
3 case None => 0
4 }

withDefault is a val of type Option[Int] => Int – a function type – and
its value is a sequence of cases. This is a total function because an
Option is a sealed abstract class with only Some or a None as concrete
subclasses.

23 / 26



Partial Functions
A function is total if is defined for every element of its domain. A
partial function can be defined with case sequences:

1 val second: List[Int] => Int = {
2 case x :: y :: _ => y
3 }

I is defined only for Lists with length 2 or greater.

Note that the static type of second is total – its partialness manifests
only at runtime. You can use a static type annotation that tells the
compiler that the function is partial, which allows you to test
whether the function is defined for particular elements of the its
domain:

1 val second: PartialFunction[List[Int],Int] = {
2 case x :: y :: _ => y
3 }
4 scala> second.isDefinedAt(List(5,6,7))
5 res30: Boolean = true
6
7 scala> second.isDefinedAt(List())
8 res31: Boolean = false 24 / 26



Uses of Partial Functions

The Akka actors library uses partial functions to define the messages
that an actor will handle:

1 var sum = 0
2
3 def receive = {
4 case Data(byte) =>
5 sum += byte
6
7 case GetChecksum(requester) =>
8 val checksum = ~(sum & 0xFF) + 1
9 requester ! checksum

10 }

We’ll learn actors later.

25 / 26



Conclusion

Case classes and pattern matching are frequently used in Scala

I Case classes give you convenience (parametric fields, equals,
hashCode, copy) “for free”

I But case classes are most powerful when used together with
pattern matching

I Pattern matching is also useful for destructuring binds

26 / 26


