
Exam 1 Review

Scala

1 / 9

General Scala

I How do you pronouce Scala?
I The main version of Scala compiles to bytecode for which

platform?
I How can you run Scala code?
I What is Scala’s primary build tool?
I What is the highest supertype of all Scala objects?
I What is the lowest subtype of all Scala objects?
I What is the difference between == and eq?
I Which packages are implicitly imported in every Scala source

file?

2 / 9

Values, Variables and Control Structures

I What is the value and type of s below?

1 val moritz = 1865
2 val s = {
3 "Max"
4 moritz
5 }

I What is the value and type of result below?

1 val result = if (true) "blue" else 2

I What is the difference between a val and a var?

3 / 9

Collections
I Write an expression that gives the number of elements in xs.

1 val xs = Set(...)

I Write an expression that creates a Map referenced by a val

named langs such that

1 scala> langs("Lisp")
2 res0: String = John McCarthy
3
4 scala> langs("Java")
5 res1: String = James Gosling
6
7 scala> langs("Pascal")
8 res2: String = Niklaus Wirth
9

10 scala> langs("Scala")
11 res3: String = Martin Odersky

I Write a for-comprehension that uses langs from the previous
question to create a Seq of the last names of the values in langs,
that is, List(McCarthy, Gosling, Wirth, Odersky).

4 / 9

Functions

I Write a function called mean that takes a variable number of
Double parameters and returns their arithmetic mean (sum
divided by number of numbers).

I Given xs: List[Int], write an invocation of the filter method
on xs that passes a function literal which selects only the odd
numbers in xs.

I Write a function named listToString[T] that takes a single
List[T] and returns a string representation of the List[T]. The
listToString function should have a single expression which calls
a nested helper function which is recursive and uses pattern
matching to recursively accumulate a string representation.
Your helper function may use an if statement instead of pattern
matching for partial credit.

5 / 9

Classes and Objects

I Write the minimal Scala definition of a (non-case) class named
Item which has two fields, name of type String and hauptstadt of
type String.

I Write an equals method for the Item class above using the
recipe we discussed in class.

I Write a hashCode method for the Item class above using the
recipe we discussed in class.

I Write a companion object for the Item class above with a
factory method that allows us to create an Item object with
expression like Item("Key Lime", 3.14) (leaving off operator new).

6 / 9

Inheritance

Given the Person class below, write the minimal non-final subclass of
Person named Employee that adds a mutable salary: Double field and
initializes the fields defined in Person.

1 class Person(val name: String)

7 / 9

Case Classes and Pattern Matching

I Given the classes below, write a function named next which
takes a single parameter fußgängerampel: AmpelMann and returns
the next AmpelMann in the Grün -> Rot -> Grün cycle. Your next

function body should be a single match expression.

1 sealed trait AmpelMann
2 case object Grün extends AmpelMann
3 case object Rot extends AmpelMann

8 / 9

Algebraic Data Types
I Write minimal traits/classes/case classes such that the

following function would compile without warning or error, but
if you removed one of the cases it would compile with a
“match may not be exhaustive” warning.

1 def hauptstadt(land: Bundesland) = land match {
2 case land: Berlin => "Berlin"
3 case land: Brandenburg => "Potsdam"
4 case land: MecklenburgVolpommern => "Schwerin"
5 case land: SachsenAnhalt => "Magdeburg"
6 case land: Sachsen => "Dresden"
7 case land: SchleswigHolstein => "Kiel"
8 case land: FreieHansestadtHamburg => "Hamburg"
9 case land: HansestadtBremen => "Bremen"

10 case land: Niedersachsen => "Hannover"
11 case land: NordrheinWestfalen => "Düsseldorf"
12 case land: FreistaatThüringen => "Erfurt"
13 case land: Hessen => "Wiesbaden"
14 case land: RheinlandPfalz => "Mainz"
15 case land: Saarland => "Saarbrücken"
16 case land: BadenWürttemberg => "Stuttgart"
17 case land: FreistaatBayern => "München"
18 }

9 / 9

