
Object-Oriented Design

1 / 33



Software Design

2 / 33



Design

Design (noun) A plan or protocol for carrying out or accomplishing
something. – Webster’s Dictionary

Engineering design: A systematic, intelligent process in which
designers generate, evaluate and specify designs for
devices, systems, or processes whose form(s) and
function(s) acheive clients’ objectives and users’ needs
while satisfying a specified set of constraints. – Dym
and Little, quoted in Carlos Otero, Software
Engineering Design

Design Taking choices among alternative solutions in pursuit
of design goals and satisfying design constraints. –
Dr. CS

3 / 33



Fundamenta Design Principles

I Modularization
I Abstraction
I Encapsulation
I Coupling and Cohesion
I Separation of interface and implementation
I Suficiency and completeness

4 / 33



Software Development is not Engineering – Reeves

Software development is not engineering (at least not in the
traditional sense). In traditional engineering:
I Engineers (design team) create detailed designs
I Designs are given to manufacturing teams to build
I If design is complete, no further input from design team is

necessary
I Building can be very expensive
I Bugs in hardware design even more expensive: e.g., if design

error in a car is not caught early, thousands of cars can be sold
with defects resulting in deaths and recalls, bridges can
collapse, etc.

Feedback cycle very long and expensive, leading to traditional
engineering’s emphasis on detailed documentation

5 / 33



The Code is the Design – Reeves

In software development:
I Source code is given to a compiler and linker, which builds the

runnable software very quickly and inexpensively
I Tight feedback loop
I Easy to generate complex designs
I Testing and debugging is part of the design process

Software design is about managing complexity.

6 / 33



Object-Oriented Design

7 / 33



Object Design – Wirfs-Brock
I Design driven by roles and responsibilities
I Write story about system, identify themes and abstractions,

identify candidate roles/classes that support themes
I When candidates identified, model reponsibilities and

collaborations
I Exploratory design with CRC cards (candidates, responsibilities,

collaborations)
I Object roles often fit into these steriotypes:

I Informatoin holder – knows and provides information
I Structurer – maintains relationships between objects and

information about those relationships
I Service provider – performs work and, in general, offers

computing services
I Coordinator – reacts to events by delegating tasks to others
I Controller – makes decisions and closely directs others’ actions
I Interfacer – transforms information and requests between

idstinct parts of the system

8 / 33



Agile Design

Fundamental principle of agile design:
The code is the design. – Jack Reeves, 1992

Design Smells
I Rigidity – system is too hard to change becuase change in one

place forces changes in many other places
I Fragility – changes break things that are conceptually unrelated
I Immobility – too hard to resuse components in other systems
I Viscosity – hard to do it right, easy to do it wrong
I Needless Complexity – infrastructure with no direct benefit
I Needless Repetition – repeated structures that could be unified

under a single abstraction
I Opacity – hard to read and understand

Design smells avoided or fixed by applying design principles like SRP,
OCP . . .

9 / 33



SOLID Design – Robert C. Martin, aka, “Uncle Bob”

I Single Responsibility Principle (SRP)
I Open Closed Principle (OCP)
I Liskov Substitution Principle (LSP)
I Interface Segregation Principle (ISP)
I Dependency Inversion Principle (DIP)

These all boil down to (high) cohesion, (loose) coupling, and reuse.

10 / 33



SRP Counterexample – Too Many Responsibilities

1 public class GreetingFrame extends JFrame implements ActionListener {
2 private JLabel greetingLabel;
3 public GreetingFrame() {
4 ...
5 JButton button = new JButton("Greet!");
6 button.addActionListener(this);
7 ...
8 }
9 public void actionPerformed(ActionEvent e) {

10 Greeter greeter = new Greeter("bob");
11 String greeting = greeter.greet();
12 greetingLabel.setText(greeting);
13 }
14 }

I If we add other buttons or menu items to the GUI, we have to
modify the actionPerformed method to handle an additional
event source.

I If we change the behavior of the a button, we have to modify
the actionPerformed method.

11 / 33



SRP Refactoring
1 private class GreetButtonListener implements ActionListener {
2
3 private JLabel greetingLabel;
4
5 public GreetButtonListener(JLabel greetingLabel) {
6 this.greetingLabel = greetingLabel;
7 }
8 public void actionPerformed(ActionEvent e) {
9 ... }

10 }

1 public class GreetingFrame extends JFrame {
2 ...
3 public GreetingFrame() {
4 ...
5 button.addActionListener(new GreetButtonListener(greetingLabel));
6 ...
7 }
8 }

I Additions to the UI require changes only to GreetingFrame.
I Changes to greet button behavior require changes only to

GreetButtonListener. 12 / 33



Open-Closed Principle

Software Entities (classes, modules, functions) should be
open for extension, but closed for modification.

I Open for extension means the module should be extendable
with new behavior.

I Closed for modification means the module shouldn’t need to be
touched in order to add the extension.

Object-oriented polymorphism makes this possible, namely, to write
new code that works with old code without having to touch the old
code.

13 / 33



OCP Counterexample – Extension Requires Modification

1 public class Sql {
2 public Sql(String table, Column[] columns)
3 public String create()
4 public String insert(Object[] fields)
5 public String selectAll()
6 public String findByKey(String keyColumn, String keyValue)
7 public String select(Column column, String pattern)
8 public String select(Criteria criteria)
9 public String preparedInsert()

10 private String columnList(Column[] columns)
11 private String valuesList(Object[] fields, final Column[] columns)
12 private String selectWithCriteria(String criteria)
13 private String placeholderList(Column[] columns)
14 }

I This class violates SRP becuase there are multiple axes of
change, e.g., updating an exising statement type (like create)
or adding new kinds of statements.

I Extension with new SQL query types requires modifying this
class.

14 / 33



OCP Refactoring

Abstract base class that doesn’t change:

1 public abstract class Sql {
2 public Sql(String table, Column[] columns)
3 public abstract String generate();
4 }

Extended by adding new subclasses without touching other classes:

1 public class CreateSql extends Sql {
2 public CreateSql(String table, Column[] columns)
3 @Override public String generate()
4 }
5 public class SelectSql extends Sql {
6 public SelectSql(String table, Column[] columns)
7 @Override public String generate()
8 }

This is high cohesion, low coupling, and reuse of the interface
declared in the base class.

15 / 33



Liskov Substitution Principle (LSP)

Subtypes must be substitutable for their supertypes.

Most important principle in object-oriented design

16 / 33



LSP Counterexample

A suprising counter-example:

1 public class Rectangle {
2 public void setWidth(double w) { ... }
3 public void setHeight(double h) { ... }
4 }
5 public class Square extends Rectangle {
6 public void setWidth(double w) {
7 super.setWidth(w);
8 super.setHeight(w);
9 }

10 public void setHeight(double h) {
11 super.setWidth(h);
12 super.setHeight(h);
13 }
14 }

I We know from math class that a square “is a” rectangle.
I The overridden setWidth and setHeight methods in Square enforce

the class invariant of Square, namely, that width == height.

17 / 33



LSP Violation

Consider this client of Rectangle:

1 public void g(Rectangle r) {
2 r.setWidth(5);
3 r.setHeight(4);
4 assert r.area() == 20;
5 }

I Client (author of g) assumes width and height are independent
in r because r is a Rectangle.

I If the r passed to g is actually an instance of Square, what will
be the value of r.area()?

The Object-oriented is-a relationship is about behavior. Square’s
setWidth and setHeight methods don’t behave the way a Rectangle’s
setWidth and setHeight methods are expected to behave, so a Square

doesn’t fit the object-oriented is-a Rectangle definition. Let’s make
this more formal . . .

18 / 33



Conforming to LSP: Design by Contract
Require no more, promise no less.

Author of a class specifies the behavior of each method in terms of
preconditions and postconditions. Subclasses must follow two rules:
I Preconditions of overriden methods must be equal to or weaker

than those of the superclass (enforces or assumes no more than
the constraints of the superclass method).

I Postconditions of overriden methods must be equal to or
greater than those of the superclass (enforces all of the
constraints of the superclass method and possibly more).

In the Rectangle-Square case the postcondition of Rectangle’s
setWidth method:

1 assert((rectangle.w == w) && (rectangle.height == old.height))

cannot be satisfied by Square, which tells us that a Square doesn’t
satisfy the object-oriented is-a relationship to Rectangle.

19 / 33



LSP Conforming 2D Shapes

1 public interface 2dShape {
2 double area();
3 }
4 public class Rectangle implements 2dShape {
5 public void setWidth(double w) { ... }
6 public void setHeight(double h) { ... }
7 public double area() {
8 return width * height;
9 }

10 }
11 public class Square implements 2dShape {
12 public void setSide(double w) { ... }
13 public double area() {
14 return side * side;
15 }
16 }

20 / 33



Interface Segregation Principle
Clients should not be forced to depend on methods they
don’t use.

Break up fat interfaces into a set of smaller interfaces. Each client
depends on the small interface it needs, and none of the others.

Interface Segregation Principle (ISP)
Clients should not be forced to depend on methods they don’t
use.

Break up fat interfaces into a set of smaller interfaces. Each client
depends on the small interface it needs, and none of the others.

Additional UI methods in UI require recompilation of all the
transaction classes, even the ones that don’t use the new
methods.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 2340 15 / 16

Figure 1: Fat UI Interface

Additional UI methods in UI require recompilation of all the
transaction classes, even the ones that don’t use the new methods.

21 / 33



ISP Refactoring
ISP Example

Segregated UI interfaces:

Each transaction gets its own UI interface.
Adding transactions doesn’t require touching or recompiling other
transactions or UIs.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 2340 16 / 16

Figure 2: Segregated UI Interfaces

I Each transaction gets its own UI interface.
I Adding transactions doesn’t require touching or recompiling

other transactions or UIs.

22 / 33



Dependency Inversion Principle

a. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

b. Abstractions should not depend on details. Details should
depend on abstractions.

This basically means program to an interface, not a particular
implementation of the interface.

23 / 33



Dependency Inversion Principle

a. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

b. Abstractions should not depend on details. Details should
depend on abstractions.

This basically means program to an interface, not a particular
implementation of the interface.

23 / 33



DIP Counterexample[ˆ1]

1 public class RealBillingService {
2 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
3 PaypalCreditCardProcessor processor = new

PaypalCreditCardProcessor();
4 // Card charging code ...
5 }
6 }

I Dependence on particular implementation of credit card
processor

new is a code smell.
[ˆ1] https://github.com/google/guice/wiki/Motivation

24 / 33



DIP Refactoring

1 public interface CreditCardProcessor { ... }
2
3 public class RealBillingService {
4 private final CreditCardProcessor processor;
5
6 public RealBillingService(CreditCardProcessor processor) {
7 this.processor = processor;
8 }
9

10 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
11 // Credit card charging code ...
12 }
13 }

I Now RealBillingService depends on the CreditCardProcessor

interface, not any particular implementation

25 / 33



Dependency Injection
1 public interface CreditCardProcessor { ... }
2
3 public class RealBillingService {
4 private final CreditCardProcessor processor;
5
6 public RealBillingService(CreditCardProcessor processor) {
7 this.processor = processor;
8 }
9

10 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
... }

11 }

Note that we’ve eliminated new by passing an instance of
CreditCardPricessor in the constructor
I This now satisfies the OCP because we can extend

RealBillingService to work with additional CreditCardProcessors
without modifying RealBillingService

I Wiring a class to its concrete dependencies external to the
class is known as dependency injection and it gets much fancier
than the manual approach shown here

26 / 33



Documenting Designs – Unified Modeling Language

A standardized diagrammatic language for communicating OO
designs in a language-independent way. Very rich, but for now focus
on:
I use cases,
I domain model (classes and associations),
I packages, and
I sequence digrams.

27 / 33



UML Use Cases
Use Cases

A use case describes some user’s interaction with the system. Most
use cases contain:

an actor, here simply “User,”
a use case, here “Create new todo,” and
(optionally) a system boundary, here “tomcat-todo.”

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Software Design 10 / 6

Figure 3: UML Use Case

A use case describes some user’s interaction with the system. Most
use cases contain:
I an actor, here simply “User,”
I a use case, here “Create new todo,” and
I (optionally) a system boundary, here “tomcat-todo.”

28 / 33



UML Class Diagrams
Class Diagrams

Class diagrams contain
a class name, here “Todo,”
instance variables, here “title” and “task”. Note that types are
given after names, as in “: String”. The “-” means private.
methods. The “+” means public. (“#” means protected, but we
have no protected members in this example.)

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Software Design 11 / 6

Figure 4: UML Class Diagram

Class diagrams contain
I a class name, here “Todo,”
I instance variables, here “title” and “task”. Note that types are

given after names, as in “: String”. The “-” means private.
I methods. The “+” means public. (“#” means protected, but

we have no protected members in this example.)

29 / 33



UML Associations
Associations

TodoDb is italicized, meaning it is abstract. The “«interface»”
further means that it is an interface.
TodoDbHashMapImpl is a subtype of TodoDb.
TodoDbHashMapImpl is composed of a HashMap<K,V>.
HashMap is a paramterized type with type parameters K and V.
TodoDb aggregates Todo objects.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Software Design 12 / 6

Figure 5: UML Associations

I /TodoDb/ is italicized, meaning it is abstract. The “<>”
further means that it is an interface.

I TodoDbHashMapImpl is a subtype of TodoDb.
I TodoDbHashMapImpl is composed of a HashMap<K,V>.
I HashMap is a paramterized type with type parameters K and V.
I TodoDb aggregates Todo objects.

30 / 33



UML PackagesPackages

The tab shows the package name.
The main box lists classes and interfaces using the same +, -, and
# visibility modifiers used for members in class diagrams.
An alternative form is to simply put the package name in the main
box and not list the members of the package.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Software Design 13 / 6

Figure 6: UML Package Diagram

I The tab shows the package name.
I The main box lists classes and interfaces using the same +, -,

and # visibility modifiers used for members in class diagrams.
I An alternative form is to simply put the package name in the

main box and not list the members of the package.

31 / 33



UML Sequence Diagrams
1 class TodoDbTreeMapImpl {
2 TreeMap<Integer,Todo>

todos;
3
4 Integer create(Todo todo) {
5 Integer newId =

todos.size();
6 todos.put(newId, todo);
7 return newId;
8 }
9 }

Figure 7: UML Sequence Diagram

I The top rectangles represent objects (instances of
types/classes).

I Time progresses vertically downward.
I The dashed lines represent object lifetimes.
I The narrow vertical boxes represent operations of the objects

(here, only create on the todoDb object).
I Arrows are “messages” or method calls and returns. 32 / 33



Conclusions
I Design is an art born of empirical science and intuitive

experience
I Practical experience and formal studies of software systems

have produced design principles and guidelines
I Design involves tradeoffs – balancing constraints means

prioritizing
And a final word about design documentation: if Jack Reeves is
right (and I think he is), then
I The code is the design, produced by the design team,
I The compiler and linker are the manufacturing team, and
I Compilers and linkers don’t use design documents.
I Design documents are for other “designers” to help them

understand the code
Punch line: design documents are like comments – they make up for
lack of expressivity in the code. They’re a necessary evil at best, not
the “point” of design.

33 / 33


	Software Design
	Object-Oriented Design

