
Clean Code

1 / 24

Clean Code

What is “clean code?”

I Elegant and efficient. – Bjarne Stroustrup
I Simple and direct. Readable. – Grady Booch
I Understandable by others, tested, literate. – Dave Thomas
I Code works pretty much as expected. Beatuful code looks like

the language was made for the problem. – Ward Cunningham

Why do we care abou clean code?

I Messes are costly. Quick and dirty to get it done ends up not
getting it done and you will not enjoy it. It’s lose-lose!

I We are professionals who care about our craft.

The Boy Scout Rule

2 / 24

Meaningful Names

I The name of a variable, method, or class should reveal its
purpose.

I If you feel the need to comment on the name itself, pick a
better name.

I Code with a dictionary close at hand.

Don’t ever do this!
1 int d; // elapsed time in days

Much better:
1 int elapsedTimeInDays;
2 int daysSinceCreation;
3 int daysSinceModification;
4 int fileAgeInDays;

3 / 24

Avoid Disinformative Names
Avoid names with baggage, unless you want the baggage.

I hp not a good name for hypotenuse. hp could also be
Hewlett-Packard or horsepower.

Don’t hint at implementation details in a variable name.

I Prefer accounts to accountList.
I Note: certainly do want to indicate that a variable is a

collection by giving it a plural name.

Superbad: using O, 0, l, and 1.
1 int a = l;
2 if (O == l)
3 a=O1;
4 else
5 l=01;

Don’t think you’ll never see code like this? Sadly, you will.

4 / 24

Avoid Encodings

Modern type systems and programming tools make encodings even
more unnecessary. So, AVOID ENCODINGS! Consider:

1 public class Part {
2 private String m_dsc; // The textual descriptio
3 void setName(String name) {
4 m_dsc = name;
5 }
6 }

The m_ is useless clutter. Much better to write:
1 public class Part {
2 private String description;
3 void setDescription(String description) {
4 this.description = description;
5 }
6 }

5 / 24

Clean Fuctions

Functions Should be Small and Do one Thing Only

How smallis small? A few lines, 5 or 10. “A screen-full” is no longer
meaningful with large monitors and small fonts.

Some signs a function is doing too much:

I “Sections” within a function, often delimited by blank lines.

I Deeply nested logic.

I Many parameters.
“If you have a procedure with ten parameters, you probably
missed some.” – Alan Perlis

6 / 24

Writing Functions that Do One Thing
One level of abstraction per function.

I A function that implements a higher-level algorithm should call
helper functions to execute the steps of the algorithm.

Write code using the stepdown rule.

I Code should read like a narrative from top to bottom.
I Read a higher level function to get the big picture, the

functions below it to get the details.

Example of stepdown rule/newspaper metaphor:
1 private void createGui() {
2 add(createDataEntryPanel(), BorderLayout.NORTH);
3 add(createButtonPanel(), BorderLayout.SOUTH);
4 setJMenuBar(createMenuBar());
5 }
6 private JPanel createDataEntryPanel() { ... }
7 private JPanel createButtonPanel() { ... }
8 private JMenuBar createMenuBar() { ... }

7 / 24

Function Parameters
Common one parameter forms

I Predicate functions: boolean fileExists“(”MyFile)

I Transformations: InputStream fileOpen“(”MyFile)

I Events: void passwordAttemptFailedNtimes(int attempts)

Higher numbers of function parameters are harder to get right. Even
one argument functions can be problematic. Consider flag argumets:

Instead of

I render(boolean isSuite), a call to which would look like
render(true),

write two methods, like

I renderForSuite() and renderForSingleTest()

Keep in mind that in OOP, every instance method call has an
implicit argument: the object on which it is invoked.

8 / 24

Minimizing the Number of Arguments

Use objects. Instead of
1 public void doSomethingWithEmployee(String name,
2 double pay,
3 Date hireDate)

Represent employee with a class:
1 public void doSomethingWith(Employee employee)

Use var-args for multiple parameters playing the same role:
1 public int max(int ... numbers)
2 public String format(String format, Object... args)

9 / 24

Avoid Side Effects

What’s wrong with this function?
1 public class UserValidator {
2 private Cryptographer cryptographer;
3 public boolean checkPassword(String userName, String password) {
4 User user = UserGateway.findByName(userName);
5 if (user != User.NULL) {
6 String codedPhrase = user.getPhraseEncodedByPassword();
7 String phrase = cryptographer.decrypt(codedPhrase, password);
8 if ("Valid Password".equals(phrase)) {
9 Session.initialize();

10 return true; }
11 }
12 return false; }
13 }

10 / 24

Avoid Side Effects

What’s wrong with this function?
1 public class UserValidator {
2 private Cryptographer cryptographer;
3 public boolean checkPassword(String userName, String password) {
4 User user = UserGateway.findByName(userName);
5 if (user != User.NULL) {
6 String codedPhrase = user.getPhraseEncodedByPassword();
7 String phrase = cryptographer.decrypt(codedPhrase, password);
8 if ("Valid Password".equals(phrase)) {
9 Session.initialize();

10 return true; }
11 }
12 return false; }
13 }

Has the side effect of initializing the session. Might erase an existing
session, or might create temporal coupling: can only check password
for user that doesn’t have an existing session.

11 / 24

Command Query Separation

Consider:
1 public boolean set(String attribute, String value);

We’re setting values and querying . . . something, leading to very
bad idioms like

1 if (set("username", "unclebob"))...

Better to separate commands from queries:
1 if (attributeExists("username")) {
2 setAttribute("username", "unclebob");
3 ...
4 }

12 / 24

Prefer Exceptions to Error Codes
Error codes force mixing of error handling with main logic :

1 if (deletePage(page) == E_OK) {
2 if (registry.deleteReference(page.name) == E_OK) {
3 if (configKeys.deleteKey(page.name.makeKey()) == E_OK){
4 logger.log("page deleted");
5 } else {
6 logger.log("configKey not deleted");
7 }
8 } else {
9 logger.log("deleteReference from registry failed"); }

10 } else {
11 logger.log("delete failed"); return E_ERROR;
12 }

Let language features help you:
1 try {
2 deletePage(page);
3 registry.deleteReference(page.name);
4 configKeys.deleteKey(page.name.makeKey());
5 } catch (Exception e) {
6 logger.log(e.getMessage());
7 }

13 / 24

Extract Try/Catch Blocks

You can make your code even clearer by extracting try/catch
statements into functions of their own:

1 public void delete(Page page) {
2 try {
3 deletePageAndAllReferences(page); }
4 catch (Exception e) {
5 logError(e);
6 }
7 }
8 private void deletePageAndAllReferences(Page page) throws Exception {
9 deletePage(page);

10 registry.deleteReference(page.name);
11 configKeys.deleteKey(page.name.makeKey());
12 }
13 private void logError(Exception e) {
14 logger.log(e.getMessage());
15 }

14 / 24

Clean Comments

Comments are (usually) evil.

I Most comments are compensation for failures to express ideas
in code.

I Comments become baggage when chunks of code move.
I Comments become stale when code changes.

Result: comments lie.

Comments don’t make up for bad code. If you feel the need for a
comment to explain some code, put effort into improving the code,
not authoring comments for it.

15 / 24

Good Names Can Obviate Comments

1 // Check to see if the employee is eligible for full benefits
2 if ((employee.flags & HOURLY_FLAG) && (employee.age > 65))

We’re representing a business rule as a boolean expression and
naming it in a comment. Use the language to express this idea:

1 if (employee.isEligibleForFullBenefits())

Now if the business rule changes, we know exactly where to change
the code that represents it, and the code can be reused. (What
does “reused” mean?)

16 / 24

Clean Formatting

Code should be written for human beings to understand,
and only incidentally for machines to execute. – Hal Abel-
son and Gerald Sussman, SICP
The purpose of a computer program is to tell other people
what you want the computer to do. – Donald Knuth

The purpose of formatting is to facilitate communication. The
formatting of code conveys information to the reader.

17 / 24

Vertical Formatting

I Newspaper metaphor
I Vertical openness between concepts Vertical density
I Vertical distance
I Vertical ordering

18 / 24

Vertical Openness Between Concepts
Notice how vertical openness helps us locate concepts in the code
more quickly.

1 package fitnesse.wikitext.widgets;
2
3 import java.util.regex.*;
4
5 public class BoldWidget extends ParentWidget {
6
7 public static final String REGEXP = "”’”’.+?";
8
9 private static final Pattern pattern = Pattern.compile("”’(.+?)”’",

10 Pattern.MULTILINE + Pattern.DOTALL
11);
12
13 public BoldWidget(ParentWidget parent, String text) throws Exception {
14 super(parent);
15 Matcher match = pattern.matcher(text);
16 match.find();
17 addChildWidgets(match.group(1));
18 }
19 }

19 / 24

Vertical Openness Between Concepts
If we leave out the blank lines:

1 package fitnesse.wikitext.widgets;
2 import java.util.regex.*;
3 public class BoldWidget extends ParentWidget {
4 public static final String REGEXP = "”’”’.+?";
5 private static final Pattern pattern = Pattern.compile("”’(.+?)”’",
6 Pattern.MULTILINE + Pattern.DOTALL
7);
8 public BoldWidget(ParentWidget parent, String text) throws Exception {
9 super(parent);

10 Matcher match = pattern.matcher(text);
11 match.find();
12 addChildWidgets(match.group(1));
13 }
14 }

I It’s harder to distinguish the package statement, the beginning
and end of the imports, and the class declaration.

I It’s harder to locate where the instance variables end and
methods begin.

20 / 24

Vertical Density
Openness separates concepts. Density implies association. Consider:

1 public class ReporterConfig {
2 /** The class name of the reporter listener */
3 private String className;
4
5 /** The properties of the reporter listener */
6 private List<Property> properties = new ArrayList<Property>();
7
8 public void addProperty(Property property) {
9 properties.add(property);

10 }

The vertical openness (and bad comments) misleads the reader.
Better to use closeness to convey relatedness:

1 public class ReporterConfig {
2 private String className;
3 private List<Property> properties = new ArrayList<Property>();
4
5 public void addProperty(Property property) {
6 properties.add(property);
7 }
8 }

21 / 24

Vertical Distance and Ordering

Concepts that are closely related should be vertically close to each
other.

I Variables should be declared as close to their usage as possible.
I Instance variables should be declared at the top of the class.
I Dependent functions: callers should be above callees.

22 / 24

Horizontal Openness and Density

I Keep lines short. Uncle Bob says 120, but he’s wrong. Keep
your lines at 80 characters or fewer if possible (sometimes it is
impossible, but very rarely).

I Put spaces around = to accentuate the distinction between the
LHS and RHS.

I Don’t put spaces between method names and parens, or parens
and paramter lists - they’re closely related, so should be close.

I Use spaces to accentuate operator precedence, e.g., no space
between unary operators and their operands, space between
binary operators and their operands.

I Don’t try to horizontally align lists of assignments – it draws
attention to the wrong thing and can be misleading, e.g.,
encouraging the reader to read down a column.

I Always indent scopes (classes, methods, blocks).

23 / 24

Team Rules

I Every team should agree on a coding standard and everyone
should adhere to it.

I Don’t modify a file just to change the formatting, but if you
are modifying it anyway, go ahead and fix the formatting of the
code you modify.

I Code formatting standards tend to get religious. My rule:
make your code look like the language inventor’s code.

I If the language you’re using has a code convention (like
Java’s), use it!

24 / 24

