
CS 2340 Objects and Design
Behavioral Patterns

Christopher Simpkins
chris.simpkins@gatech.edu

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 1 / 15

Behavioral Design Patterns

Behavioral patterns are concerned with algorithms and the assignment
of responsibilities between objects. These patterns characterize
complex control flow that’s difficult to follow at run-time. They shift your
focus away from flow of control to let you concentrate just on the way
objects are interconnected.

Behavioral class patterns use inheritance to distribute behavior
between classes. (Template Method)
Behavioral object patterns use object composition rather than
inheritance. The Strategy (315) pattern encapsulates an algorithm
in an object. Strategy makes it easy to specify and change the
algorithm an object uses.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 2 / 15

Observer (a.k.a. Dependents, Publish-Subscribe)
Intent: Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and
updated automatically.
Structure

Participants
Subject knows its observers.
Observer defines a notification interface for objects that should be
notified of changes in a subject.
ConcreteSubject sends a notification to its observers when its
state changes.
ConcreteObserver implements Observer notification interface.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 3 / 15

Observer Example: Swing Buttons

javax.swing.AbstractButton is a Subject,
javax.swing.JButton is a ConcreteSubject. We set up an exit
button like this:
JButton exitButton = new JButton("Exit");
exitButton.addActionListener(new ExitListener());

JButton’s addActionListener method takes an object that
implements the java.awt.event.ActionListener interface:
public interface ActionListener extends EventListener {

/**
* Invoked when an action occurs.

*/
public void actionPerformed(ActionEvent e);

}

java.awt.event.ActionListener is an Observer, and
ExitListener is a ConcreteObserver.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 4 / 15

Command (a.k.a. Action, Transaction)
Intent: Encapsulate a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support undoable
operations.
Structure

Participants

Command declares an interface for executing an operation.
ConcreteCommand defines a binding between a Receiver object and
an action; implements Execute by invoking the corresponding
operation(s) on Receiver.
Client creates a ConcreteCommand object and sets its receiver.
Invoker asks the command to carry out the request.
Receiver knows how to perform the operations associated with carrying
out a request. Any class may serve as a Receiver.

See colorbox for an example of an undoable command.
Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 5 / 15

http://www.cc.gatech.edu/~simpkins/teaching/gatech/cs2340/code/colorbox/

Iterator (a.k.a. Cursor)
Intent: Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.
Structure

Participants
Iterator defines an interface for traversing elements.
Concretelterator implements the Iterator interface; keeps track of
the current position in the traversal of the aggregate.
Aggregate defines an interface for creating an Iterator object.
ConcreteAggregate implements the Iterator creation interface to
return an instance of the proper Concretelterator.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 6 / 15

Iterator Example: BST Traversal (1 of 2)

Binary tree implemented as linked nodes:
public class BinaryTree<E extends Comparable<E>> implements

Iterable<E> {

private class Node<E> {
E item;
Node<E> left;
Node<E> right;

Node(E item, Node<E> left, Node<E> right) {
this.item = item;
this.left = left;
this.right = right;

}
}

...
private Node<E> root;

...

We’d like to allow clients to traverse a BST in a uniform way whether
traversing in-order, pre-order, or post-order.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 7 / 15

Iterator Example: BST Traversal (2 of 2)
java.util.Iterator interface provides a uniform way to traverse
all Java collections. Here’s an implementation for BST:
private class InOrder<E> implements Iterator<E> {
private Node<E> curNode;
private Stack<Node<E>> fringe;

public InOrder(Node<E> root) {
curNode = root;
fringe = new LinkedStack<>();

}
public boolean hasNext() { ... }

public E next() {
while (curNode != null) {

fringe.push(curNode);
curNode = curNode.left;

}
curNode = fringe.pop();
E item = curNode.item;
curNode = curNode.right;
return item;

}
public void remove() { throw new UnsupportedOperationException(); }

} Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 8 / 15

Strategy (a.k.a. Policy)

Intent: Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary independently
from clients that use it.
Structure

Participants
Strategy declares an interface common to all supported
algorithms.
ConcreteStrategy implements the algorithm using the Strategy
interface.
Context is configured with a ConcreteStrategy object; maintains a
reference to a Strategy object; may define an interface that lets
Strategy access its data.Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 9 / 15

Strategy Example: Repetitive Dives (1 of 4)

When we breath air at depth the increased pressure causes nitrogen
to dissolve into body tissues. In SCUBA diving one must be mindful of
resudual nitrogen in the body absorbed during a dive.

On repetitive dives residual nitrogen limits the depth and time
allowed on subsequent dives before decompression is required.
The residual nitrogen in a diver’s body is represented by a
“pressure group” named by a single letter.
There are many different ways to calcuate this pressure group:
PADI’s dive tables, NAUI’s dive tables, the U.S. Navy dive tables,
and so on.

These tables different strategies for calculating pressure groups.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 10 / 15

Strategy Example: Repetitive Dives (2 of 3)
We can represent the general Strategy for calculating pressure group
ofr repetitive dives as an interface:
public interface DiveTable {

public void addDives(SortedSet<Dive> dives);

public String calculatePressureGroup();
}

The PADI table is an example of a ConcreteStrategy:
public class PadiDiveTable implements DiveTable {

private SortedSet<Dive> dives;

public void addDives(SortedSet<Dive> dives) {
this.dives = dives;

}

public String calculatePressureGroup() {
// calculate using PADI’s dive table.

}
}

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 11 / 15

Strategy Example: Repetitive Dives (3 of 3)
The Context in which a DiveTable strategy is used is
RepetitiveDives:
public class RepetitiveDives {

private TreeSet<Dive> dives = new TreeSet<Dive>();

public void add(Dive dive) {
dives.add(dive);

}
public String calculatePressureGroup(DiveTable diveTable) {

diveTable.addDives(dives);
return diveTable.calculatePressureGroup();

}
}

And if we have an instance of RepetitiveDives we can calucate
the ending pressure group with any concrete strategy:
repetitiveDives.calculatePressureGroup(new PadiDiveTable());
// or
repetitiveDives.calculatePressureGroup(new NauiDiveTable());
// and so on ...

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 12 / 15

Template Method

Intent: Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses. Template Method lets subclasses redefine
certain steps of an algorithm without changing the algorithm’s
structure.
Structure

Participants
AbstractClass defines abstract primitive operations that concrete
subclasses define to implement steps of an algorithm; implements
a template method defining the skeleton of an algorithm. The
template method calls primitive operations.
ConcreteClass implements the primitive operations to carry out
subclass-specific steps of the algorithm.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 13 / 15

Template Method Example: Q Learning Agent (1 of 2)

class TabularQLearner[WS, MS, A] ... {

override def getAction(worldState: WS) = { ... }

override def observe(worldState: WS, action: A, worldNextState: WS)
= {
super.observe(worldState, action, worldNextState)
val state: MS = moduleState(worldState)
val nextState: MS = moduleState(worldNextState)
fillInMissingQs(state)
fillInMissingQs(nextState)
val r = reward(nextState)
val maxAction = calcMaxAction(nextState)
val newVal = q((state, action)) + alpha *

(r + gamma * q((nextState, maxAction)) - q((state, action)))
q += ((state, action) -> newVal)
r

}
}

observe is a template method, calling moduleState and reward
methods defined in a subclass.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 14 / 15

Template Method Example: Q Learning Agent (2 of 2)

class FindGoal extends TabularQLearner[...] {

def moduleState(ws: WumpusState) = FindGoalState(ws.wumpus, ws.goal)

def actions(ms: FindGoalState) = WumpusAction.values.toIndexedSeq

def reward(ms: FindGoalState) =
if (ms.wumpus == ms.goal) 1.0 else -0.4

}

moduleState and reward are “primitive” operations used by the
template method defined in the superclass.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Behavioral Patterns 15 / 15

