
Agile Software Development

1 / 26



Agile Processes

Agile Manifesto (http://agilemanifesto.org/) value:
I Individuals and interactions over processes and tools
I Working software over comprehensive documentation
I Customer collaboration over contract negotiation
I Responding to change over following a plan

Guiding principle: change happens, so organize your process around
that fact
I Some developers say “we could build good software if only we

had stable requirements”
I Agile developers recognize that requirements aren’t stable and

adjust their practices to that reality
Low ceremony, emphasis on working software over “software
development bureaucracy”

2 / 26

http://agilemanifesto.org/


eXtreme Programming

Agile method characterized by 12 practices:
I The Planning Game
I Small releases
I Metaphor
I Simple design
I Testing
I Refactoring
I Pair programming
I Collective ownership
I Continuous integration
I 40 hour week
I On-site customer
I Coding standards

Based on already well-known “best practices.” XP takes them “to
the extreme”

3 / 26



XP Practices
I The Planning Game – Quickly determine the scope of the next

release by combining business priorities and technical estimates.
As reality overtakes the plan, update the plan.

I Small releases – Put a simple system into production quickly,
then release new versions on a very short cycle.

I Metaphor – Guide all development with a simple shared story
of how the whole system works.

I Simple design – The system should be designed as simply as
possible at any given moment. Extra complexity is removed as
soon as it is discovered.

I Testing – Programmers continually write unit tests, which must
run flawlessly for development to continue. Customers write
tests demonstrating that features are finished.

I Refactoring – Programmers restructure the system without
changing its behavior to remove duplication, improve
communication, simplify, or add flexibility.

[ˆ1] From Extreme Programming Explained, by Kent Beck
4 / 26



XP Practices (2 of 2)

I Pair programming – All production code is written with two
programmers at one machine.

I Collective ownership – Anyone can change any code anywhere
in the system at any time.

I Continuous integration – Integrate and build the system many
times a day, every time a task is completed.

I 40 hour week – Work no more than 40 hours a week as a rule.
Never work overtime a second week in a row.

I On-site customer – Include a real, live user on the team,
available full-time to answer questions.

I Coding standards – Programmers write all code in accordance
with rules emphasizing communication through the code.

5 / 26



Scrum
Scrum is a framework for organizing and managing work.
I Focuses on management of software development process

rather than practices
I Timeboxed iterations called sprints
I Timeboxed means the schedule is firm. If something doesn’t

get done, it goes into the next sprint.
I Daily Meeting (Pigs and Chickens)
I Each sprint ends with a release, a “ready” deliverable that

includes a subset of the final product features
Definition of “Done”: team and project dependent. Typically, when
customer accepts a story (usually also means the functional tests
pass).
For a nice concise guide to Scrum, see The Scrum Guide. We’ll
summarize in the next few slides.

6 / 26

https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf


The Scrum Team

I Product Owner is the sole person responsible for managing
the Product Backlog. May delegate to deve team, but still
responsible.

I Development Team consists of professionals who do the work
of delivering a potentially releasable Increment of “Done”
product at the end of each Sprint. Only members of the
Development Team create the Increment.

I Scrum Master is responsible for ensuring Scrum is understood
and enacted.

7 / 26



Scrum Events

I Planning: product vision and product backlog in the form of
epic user stories.

I Sprints: building the product in iterations.
The heart of Scrum is the Sprint, a time-box of one month or less
during which a “Done”, useable, and potentially releasable product
Increment is created. Each sprint has a goal, or a single coherent
theme for the sprint that focuses the team.

8 / 26



Envisioning, a.k.a. Ideation, a.k.a. Product Planning
Participants
I Required: customer
I Recommended: Scrum team
I Vision will be refined in sprints with help of Scrum team

Inputs
I Initial idea or pivoted idea
I Planning horizon
I Completion date
I Budget/resources
I Confidence threshold – definition of “done”, when you have

enough for management to make a go/no-go funding decision
Outputs
I Product vision
I Epic stories (would be in icebox in Pivotal Tracker)
I Product roadmap (optional)

9 / 26



Product Vision Formats
I Elevator statement Write a 30-second to one-minute quick

pitch of the product vision. Imagine you have stepped into an
elevator with a venture capitalist and you have to pitch him on
your product vision. Could you do it in a short elevator ride?

I Product datasheet Write the product datasheet on the first
day. Try to fit it on the front side of a one-page marketing
piece.

I Product vision box Draw the box in which you want to put
the product when it ships. Can you come up with three or four
salient points to illustrate on the box? (Drafting 15 points is
easier than drafting three or four.)

I User conference slides Create the two or three presentation
slides that you would use to introduce the product at your user
conference (or equivalent). Try to avoid any bullet points on
your slides.

I Press release Write the press release you want to issue when
the product becomes available. Good press releases clearly
communicate what is newsworthy in one page or less.

I Magazine review Draft a fictitious magazine review bylined
by the solution reviewer in your industry’s most popular trade
magazine.

[ˆ2] Kenneth Rubin, Essential Scrum: A Practical Guide to the
Most Popular Agile Process, Addison-Wesley, 2013

10 / 26



Epic Stories

A large user story, perhaps a few to many months in size, that can
span an entire release or multiple releases. Epics are useful as
placeholders for large requirements. Think: features.

Epics must be broken down into “sprintable” stories that go into
Sprint Backlogs. We’ll cover these stories when we discuss Pivotal
Tracker.

11 / 26



User Stories

\begin{quote} As a , I want to , so that I can ___ \end{quote}
Specifies
I type of user,
I the task they are trying to do, and
I why they want to do it.

In the description section, we put the actual interaction between the
user and the system. Remember this is WHAT and not HOW.

12 / 26



Story Example

Epic: "Buy a Product"

User Stories:
I As a customer I want to add a product to my shopping cart so

that I can continue shopping and come back to my cart later to
check out.

I As a cutomer I want to edit the items in my cart so that I can
change my mind without creating a new shopping session.

I As a customer I want to check out with my shopping cart so
that I can pay for my products and have them shipped to me.

I . . .

13 / 26



Writing Good Stories

I Independent – loosely coupled with other stories
I Negotiable – user stories placeholders for conversations with

the customer, not a contract
I Valuable – value to the customer relative to other stories,

permitting prioritization
I Estimatable –
I Small (sized appropriately)
I Testable

14 / 26



Gathering Stories

15 / 26



Gathering Stories
I The goal of a user-story-writing workshop is to collectively

brainstorm desired business value and create user story
placeholders for what the product or service is supposed to do.

I Story mapping takes a user-centric perspective for generating
a set of user stories. The basic idea is to decompose high-level
user activity into a workflow that can be further decomposed
into a set of detailed tasks.

16 / 26



Sprint Events
I Sprint Planning: which stories will be implemented in this

sprint, and how will they be implemented (design, tasks, etc.).
Decompose epic stories into “sprintable” stories as needed.

I Daily Scrum: The Daily Scrum is a 15-minute time-boxed
event for the Development Team to synchronize activities and
create a plan for the next 24 hours. Every team member
answers:
I What did I do yesterday to help meet the Sprint Goal?
I What will I do today to help meet the Sprint Goal?
I Do I see any impediment that prevents me or the Development

Team from meeting the Sprint Goal?
I Sprint Review: held at the end of the Sprint to inspect the

Increment and adapt the Product Backlog if needed.
I Sprint Retrospective: assess the effectiveness of the Scrum

team and identify areas for improvement.

17 / 26



Scrum Artifacts

I Product Backlog: an ordered list of everything that might be
needed in the product and is the single source of requirements
for any changes to be made to the product. The Product
Owner is responsible for the Product Backlog, including its
content, availability, and ordering.

I Sprint Backlog: the set of Product Backlog items selected for
the Sprint, plus a plan for delivering the product Increment and
realizing the Sprint Goal

I Increment: the sum of all the Product Backlog items
completed during a Sprint and the value of the increments of
all previous Sprints.

18 / 26



Domain-Driven Design

We’ll discuss DDD in more detail later, but you should start
thinking about the basic tenets of DDD now.
I Focus on representing problem domain in code
I Bounded contexts
I Ubiquitous language

19 / 26



Implementing Scrum with Pivotal Tracker

An automated tool to help manage agile projects.
Divides work into:
I Chores: work that has to be done, but that doesn’t deliver

direct benefit to the customer
I Stories: pieces of functionality that form part of the actual

application
I Bugs: malfunctioning parts of the system that need to be fixed.

20 / 26



Setting up Pivotal Tracker

I Go to http://www.pivotaltracker.com
I Create a public project (only public projects are free!)
I Add your team mates to the project
I Add me to the project (chris.simpkins@gatech.edu)
I Add your TA to the project once you know them

21 / 26

http://www.pivotaltracker.com


Creating Stories and Chores

I Press Add Story button
I Fill out information
I Automatically goes into the icebox
I Once a chore/story/bug has an estimate, it moves to the

backlog
I Prioritize the backlog by dragging and dropping
I Most complex (largest estimates) stories go first.
I Prioritizing complex tasks is a risk management strategy – you

have time to adapt
A User Story should take no more than half an iteration to complete.
If a story takes an entire iteration, there is greater risk of not
completing the story.

22 / 26



Estimation

Once a story is created it goes in the icebox, where we can estimate
its required effort on an integral scale from 0–4. These are called
story points.
A story point is an abstract measure of effort:
I For example a point might be an hour
I It might be a person-week
I It might mean “easy”

I 1 = EASY
I 2 = MEDIUM
I 3 = HARD

Velocity is the number of story points you can accomplish in a single
sprint. You guess this initially, then pivotal tracker calculates based
on historical data after you’ve completed some sprints.

23 / 26



Story Life Cycle Categories
I Icebox, where every story starts. Once a story is estimated, it

can be moved into the backlog.
I Backlog: the actual things you are going to do. We drag and

drop things from the icebox into the backlog. The backlog
should be in priority order, things at the top will be worked on
before things on the bottom. You change priorities with simple
drag and drop.

I Current: the highest priority things will be moved from the
backlog to Current based on your velocity. You do not directly
control what is put into Current.

I Done: accepted stories, chores and bugs are put into done.
Again you don’t directly move anything into done, it is
automatic: developer team finshes and delivers, cusomter
accepts.

Visually, stories move from right to left as they are ideated,
estimated, implemented, completed, and accepted

24 / 26



A Day in a Team’s Life

I Log into Pivotal Tacker.
I Pick the highest priority item in current that is not being

worked on.
I Click Start button.
I Open story and add any tasks.
I If not already present, write out the test procedure.
I Implement the story.
I Click Finish when done.
I Click Deliver when all tests pass.
I Customer clicks accept or reject.

25 / 26



This Semester’s Project

I Description
I Requirements
I Deliverables

I Milestones
I Peer evaluations

26 / 26


