
CS 2340 Objects and Design
Structural Patterns

Christopher Simpkins
chris.simpkins@gatech.edu

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 1 / 10



Structural Design Patterns

Concerned with how classes and objects are composed to form larger
structures.

Structural class patterns use inheritance to compose interfaces or
implementations. (Adapter)
Rather than composing interfaces or implementations, structural
object patterns describe ways to compose objects to realize new
functionality. The added flexibility of object composition comes
from the ability to change the composition at run-time, which is
impossible with static class/interface composition. (Composite)

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 2 / 10



Adapter (A.K.A Wrapper)

Intent: Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces.
Structure

Participants
Target defines the domain-specific interface that Client uses.
Client collaborates with objects conforming to the Target interface.
Adaptee defines an existing interface that needs adapting.
Adapter adapts the interface of Adaptec to the Target interface.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 3 / 10



Adapter Example

Imagine we’re a team writing an application that will use a
hardware transmitter, but the transmitter’s software is handled by
another team that hasn’t defined their software interface.
We can define our own interface the way we want it to work.
While we’re waiting for the transmitter team, we create a fake
implementation to work with.
When the transmitter team finally gives us their interface, we can
write an adapter to fit it to our interface.
The rest of our code is unaffected.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 4 / 10



Composite

Intent: Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.
Structure

Participants
Component declares the interface for objects in the composition.
Leaf represents leaf objects (objects with no children).
Composite defines behavior for components having children;
stores child components; implements child-related operations.
Client manipulates objects in the composition through the
Component interface.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 5 / 10



Composite Example: Dive Log (1 of 3)

Say we have a dive log with individual dives. Both represent the
concept of dive experience, so we can represent this concept
abstractly which allows us to get reports of dive experience in a
uniform way whether we have a single dive or a log of several dives:
public interface DiveExperience {

public Date getDateTimeBegin();

public Date getDateTimeEnd();

public int getMaxDepthFeet();

public int getBottomTimeMinutes();
}

This interface plays the Component role in the composite pattern.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 6 / 10



Composite Example: Dive Log (2 of 3)
Dive plays the Leaf role:
public class Dive implements DiveExperience, Comparable<Dive> {

private Date dateTimeBegin, dateTimeEnd;
private int maxDepthFeet, bottomTimeMinutes;

public Dive(Date dateTimeBegin, Date dateTimeEnd,
int maxDepthFeet, int bottomTimeMinutes) {

this.dateTimeBegin = dateTimeBegin;
// ...

}
public Date getDateTimeBegin() {return dateTimeBegin; }
public Date getDateTimeEnd() { return dateTimeEnd; }
public int getMaxDepthFeet() { return maxDepthFeet; }
public int getBottomTimeMinutes() { return bottomTimeMinutes; }

public int compareTo(Dive other) {
return this.getDateTimeBegin().

compareTo(other.getDateTimeBegin());
}
public boolean equals(Object other) { .. }

public int hashCode() { ... }
}

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 7 / 10



Composite Example: Dive Log (3 of 3)
And DiveLog plays the Composite role:
public class DiveLog implements DiveExperience {

private TreeSet<Dive> dives = new TreeSet<Dive>();
private int maxDepthFeet = 0;
public void add(Dive dive) {

dives.add(dive);
if (dive.getMaxDepthFeet() > maxDepthFeet)

maxDepthFeet = dive.getMaxDepthFeet();
}
public Date getDateTimeBegin() {

return dives.first().getDateTimeBegin();
}
public Date getDateTimeEnd() {

return dives.last().getDateTimeEnd();
}
public int getMaxDepthFeet() { return maxDepthFeet; }
public int getBottomTimeMinutes() {

int sum = 0;
for (Dive dive: dives) {

sum += dive.getBottomTimeMinutes();
}
return sum;

}
} Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 8 / 10



Decorator

Intent: Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending
functionality.
Structure

Participants
Component defines the interface for objects that can have
responsibilities added to them dynamically.
ConcreteComponent defines an object to which additional
responsibilities can be attached.
Decorator maintains a reference to a Component object and
defines an interface that conforms to Component’s interface.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 9 / 10



Decorator Example: JScrollPane

The Swing l ibrary provides a scrollbar decorator called
JScrollPane. Using it is easy:
add(new JScrollPane(new JList(...)));

By simply wrapping our JList in a JScrollPane the list will show
horizontal and vertical scroll bars as needed.

We’ve extended the functionality of a JList without having to
subclass it.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design Structural Patterns 10 / 10


