
Scala Values and Variables

1 / 9



Values and Variables

I Like Java, every Scala variable has a name and a type
I Variable definitions start with var or val.

I vars are reassignable
I vals like Java’s final

1 var x: Int = 1
2 x = 2
3
4 val y = 3.14 // Type is Double, inferred by literal
5 y = 6.28 // Won't compile -- y is a val

2 / 9



Basic Types

Same basic types as Java, but different names:

I Byte, Short, Int, Long, Char
I String
I Float
I Double
I Boolean

Literals same as in Java

3 / 9



Blocks

Blocks are enclosed in curly braces. Last expression gives value of
the block.

1 val s = {
2 1
3 2
4 "buckle my shoe"
5 }

Value of s above is "buckle my shoe"

4 / 9



Basic Operators

I Basic arithmetic, logical, relational and bitwise operators like
Java’s

I All operators are actually methods (more later)
I Precedence based on first character of operator:

I (all other special characters) then *,/,% then +,- then : then
=,! then <,> then & then ^ then | then (all letters) then (all
assignment operators)

I Associativity based on last character of operator
I Operators ending in : invoked on right operand
I All others invoked on left operand

5 / 9



Object Equality

I All objects have equals methods, just like Java but the equality
operators are different
I == same as equals method
I eq is alias testing operator

I We’ll discuss implementation of equals and hashCode in a
future lecture.

6 / 9



Basic Sequences

Lists are immutable Sequences of like-typed elements
1 val xs: List[Int] = List(1, 2, 3)
2 xs(0) = 42 // Won't compile
3
4 // Add elements to head of list with cons operator, ::
5 val ys = 0::xs
6 ys == List(0, 1, 2, 3)
7
8 // Cons returns a new list
9 xs != ys

10
11 // To "modify" xs, reassign (only works if xs is a var)
12 xs = 0::xs

Arrays are mutable fixed-sized Sequences of like-typed elements
1 val zs: Array[Int] = Array(1, 2, 3)
2 zs(0) = 42
3 zs == Array(42, 2, 3)

7 / 9



Sets and Maps
Sets are immutable by default, so we “add” to them with
reassignment

1 var trooperSet = Set("Thorny", "Farva", "Mac", "Mac")
2 trooperSet == Set("Thorny", "Farva", "Mac")
3 trooperSet += "Rabbit"
4 trooperSet.contains("Rabbit")

Map elements created with 2-tuples, which are usually created with
->

1 var majors = Map(
2 ("CS", "Computer Science"),
3 "CM" -> "Computational Media",
4 "EE" -> "Electrical Engineering"
5 )
6 majors += "IE" -> "Industrial Engineering"
7 majors("IE")
8 majors.getOrElse("AA", "Unknown Major")

-> uses implicit conversion to create Tuple2 instances.

8 / 9



Conclusion

I In Scala, every value is an object, that is, an instance of a class.
I Scala compiler makes basic types as efficient as in Java while

providing the elegance of the uniform “everything is an object”
abstraction

I Scala is statically typed but performs type inference to make
simple REPL interactions or scripts as convenient as
dynamically-typed langauges like Python

9 / 9


