
Scala Generics

Type Parameterization

1 / 16

Scala Generics

Consider:

1 class Pair[T, S](val first: T, val second: S)

I Pair is not a type
I Pair[T, S] is a generic type, or type constructor
I Pair[Int, String] is a type because arguments for T and S are

provided
THanks to type inference, these are equivalent:

1 new Pair(42, "String")
2 new Pair[Int, String](42, "String")

2 / 16

Generic Functions

Functions can also be generic. Given:

1 def getMiddle[T](a: Array[T]) = a(a.length / 2)

These two function calls are equivalent:

1 getMiddle(Array("Mary", "had", "a", "little", "lamb"))
2 getMiddle[String](Array("Mary", "had", "a", "little", "lamb"))

What is the type of f in:

1 val f = getMiddle[String] _

Exercise: write a verbose version of f above using Function1

3 / 16

https://www.scala-lang.org/api/2.12.8/scala/Function1.html

FunctionN Classes

Like every value in Scala, a function value is an instance of a classes.
In particular, a function value is an instance of one of Scala’s
“FuntionN” classes, where N is the number of parameters to the
function. Here is Function1 (with some details elided for brevity):

1 trait Function1[-T1, +R] extends AnyRef {
2 def apply(v1: T1): R
3 }

So, if getMiddle[String] _ has the type Array[String] => String, it’s a
value of type Function1[Array[String], String] which we could create
directly as:

1 val f2 = new Function1[Array[String], String] {
2 def apply(a: Array[String]): String = a(a.length / 2)
3 }

4 / 16

Variance Annotations on FunctionN Classes
Notice the - and + on the type parameters in Function1. A function is
contravariant in its parameter types and covariant in its return type.

1 trait Function1[-T1, +R] extends AnyRef {
2 def apply(v1: T1): R
3 }

These variance annotations signal to the compiler how the
supertpye-subtype relationships of type arguments relate to the
supertype-subtype relationship of the types these arguments
parameterize.
I + means covariant – if t is a subtype of u, then C1[t] can be a

subtype of C2[u]
I - means contravariant – if t is a subtype of u, then C[u] can be

a subtype of C[t]
I No annotation, the default, is invariant – only C1[t] can be a

subtype of C2[t]
Note: supertype and subtype are reflexive – every type is
both a subtype and supertype of itself.

5 / 16

Variance of Function Values

Given:

1 class Person(val name: String)
2 class Student(name: String, val id: Int) extends Person(name)

This relationship holds. Should this relationship also hold?

6 / 16

Variance of Function Values
For example, given:

1 class Person(val name: String)
2 class Student(name: String, val id: Int) extends Person(name)
3
4 class NameLength extends Function1[Person, Int] {
5 def apply(p: Person) = p.name.length
6 }
7 class GetId extends Function1[Student, Int] {
8 def apply(s: Student) = s.id
9 }

10 class GetHashCode extends Function1[AnyRef, Int] {
11 def apply(o: AnyRef) = o.hashCode
12 }

Should we be able to do this?

1 var getter1: Function1[Person, Int] = new GetId

How about this?

1 var getter2: Function1[Person, Int] = new GetHashCode

7 / 16

The LSP and Variance of Function/Method Parameters

Remember the Liskov Substitution Principle?
Subtypes should be substitutable for their supertypes.

Without getting into the exhaustive details of constraints and
invariances, we can think of the LSP informally as

Require no more, promise no less.

A Function1[Student, Int] requires more of the parameter to the apply
method than a Function1[Person, Int], namely, that the parameter
have an id member. So by the LSP,
I Function1[Student, Int] is not a proper subtype of

Function1[Person, Int] because it requires more, and
I Function1[AnyRef, Int] is a proper subtype because it requires

less.

8 / 16

http://reports-archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-156.pdf

Scala Enforces the LSP

So this does not compile:

1 var getter1: Function1[Person, Int] = new GetId

but this does:

1 var getter2: Function1[Person, Int] = new GetHashCode

9 / 16

The LSP and the Variance of Return Types

Functions are covariant in their return types, meaning return values
of subclass methods can promise more, but cannot promise less.

1 val studentCreator = new Function1[String, Person] {
2 def apply(name: String) = new Student(name, 1)
3 }

10 / 16

Variance of Scala Arrays (and Collections in General)

Scala arrays are invariant in their type parameter.

1 scala> val a1 = Array(1,2,3)
2 a1: Array[Int] = Array(1, 2, 3)
3
4 scala> val a2: Array[Any] = a1
5 <console>:12: error: type mismatch;
6 found : Array[Int]
7 required: Array[Any]

The reason is that if the assignment to a2 succeeded we could do
something unsafe like:

1 a2(0) = "boom!'

So collections in Scala are invariant. In Java, collections are also
invariant, but arrays aren’t . . .

11 / 16

Java Arrays

For historical reasons, Java arrays are covariant. This compiles:

1 String[] a1 = { "abc" };
2 Object[] a2 = a1;
3 a2[0] = new Integer(17);
4 String s = a1[0];

But the line:

1 a2[0] = new Integer(17);

throws an ArrayStoreException. The reason for this odd behavior is
that in the first versions of Java, before generics were added, the
designers wanted to be able to write code like:

1 void sort(Object[] a, Comparator cmp) { ... }

that would work with any array.

12 / 16

Lower Bounds
Say you have an immutable Queue class and you want to make it
covariant in its type parameter, which is safe for immutable
collections (becuase “modifying” them actually creates new
collections taht can have a different type. Scala won’t allow this
because method arguments are in contravariant position:

1 // Not the real scala.immutable.Queue
2 class Queue[+A] {
3 def enqueue(elem: A) = new Queue(...)
4 }

The way around this is make enqueue itself polymorphic and use a
lower bound for its type parameter:

1 class Queue[+A] {
2 def enqueue[B >: A](elem: B): Queue[B]
3 }

This is what Scala’s immutable Queue class does.

13 / 16

https://www.scala-lang.org/api/2.12.8/scala/collection/immutable/Queue.html

Flexible Polymorphic Immutable Collections

With the covariant type parameter and lower bound shown on the
previous slide we can do this:

1 import scala.collection.immutable._
2
3 class Fruit
4 class Apple extends Fruit
5 class Orange extends Fruit
6
7 val appleQ1: Queue[Fruit] = Queue(new Apple, new Apple)
8 val fruitQ1: Queue[Fruit] = appleQ1.enqueue(new Orange)
9

10 val appleQ2: Queue[Apple] = Queue(new Apple, new Apple)
11 val fruitQ2: Queue[Fruit] = appleQ2.enqueue(new Orange)

14 / 16

Upper Bounds

Returning to our Pair example, consider this modification:

1 class Pair2[T <: Comparable[T]](val first: T, val second: T) {
2 def smaller = if (first.compareTo(second) < 0) first else second
3 }

T must be a subtype of Comparable[T]. Without the type bound on T,
the call to compareTo would not compile. So we can create a Pair2 of
any type T that is a subtype of Comparable[T].

1 scala> new Pair2("Martin", "Odersky").smaller
2 res8: String = Martin

Try new Pair2(1, 2).smaller.

15 / 16

Context Bounds

Int does not implement Comparable[Int] but RichInt does, and there’s
an implicit conversion from Int to RichInt in scala.Predef:

1 implicit def intWrapper(x: Int): RichInt

Recall that we can provide a context bound to explicitly retrieve an
implicit value or apply an implicit conversion:

1 class Pair3[T : Ordering](val first: T, val second: T) {
2
3 def smaller = if (implicitly[Ordering[T]].lt(first, second)) first

else second
4 }

Remember, we’re not creating a subclass of Int, we’re creating
RichInt values from the Int values. So context bounds are different
from upper or lower bounds, and far more flexible.

16 / 16

