
Functional Data Structures

1 / 14



Functional Data Structures

Functional data structures are
I immutable,
I recursive (only way to have arbitrary size), and
I share data (else cost of copying would be prohibitive).

The simplest, most fundamental functional data structure is the
singly-linked list.

2 / 14



Functional Lists from First Principles

A list is
I empty, or
I contains an element (head) and a pointer to a list (tail)

This is a sum type in the language of algebraic data types.
In code:

1 sealed trait FunList[+T]
2 case object Empty extends FunList[Nothing]
3 case class Cons[+T](head: T, tail: FunList[T]) extends FunList[T]

3 / 14



List Construction

Given the previous definition of a functional list, we can create a list
like this:

1 val xs = Cons(1, Cons(2, Cons(3, Empty)))

Which creates a list that looks like this in memory:

4 / 14



Data Sharing

When we reference a part of an existing data structure, data are
shared between the two.

1 val xs = Cons(1, Cons(2, Cons(3, Empty)))
2 val ys = xs.tail

Creates:

5 / 14



Convenient List Construction

Of course we can make list construction more convenient:

1 object FunList {
2 def apply[T](xs: T*): FunList[T] =
3 if (xs.isEmpty) Empty
4 else Cons(xs.head, apply(xs.tail: _*))
5 }

So instead of

1 val xs = Cons(1, Cons(2, Cons(3, Empty)))

we can

1 val xs = FunList(1, 2, 3)

6 / 14



Functional List Algorithms

We process sum types with pattern matching:

1 def sum(ints: FunList[Int]): Int = ints match {
2 case Empty => 0
3 case Cons(x,xs) => x + sum(xs)
4 }
5
6 def product(ds: FunList[Double]): Double = ds match {
7 case Empty => 1.0
8 case Cons(x, xs) => x * product(xs)
9 }

Notice that there is a case for each of the alternatives of the sum
type. If we leave one out, the compiler complains because FunList is
sealed.

7 / 14



Generalized List Algorithms

Look at these two list-processing functions again:

1 def sum(ints: FunList[Int]): Int = ints match {
2 case Empty => 0
3 case Cons(x,xs) => x + sum(xs)
4 }
5
6 def product(ds: FunList[Double]): Double = ds match {
7 case Empty => 1.0
8 case Cons(x, xs) => x * product(xs)
9 }

I Each function has a case to handle the “zero” of the list, and
I a recursive step that applies a function to successive elements

of the list.
We can extract this pattern into a more general function.

8 / 14



Folding

Study this code:

1 def foldRight[A, B](xs: FunList[A], z: B)(f: (A, B) => B): B =
2 xs match {
3 case Empty => z
4 case Cons(h, t) => f(h, foldRight(t, z)(f))
5 }

We use parameters to represent
I the “zero” value, and
I the function to be applied to successive elements of the list.

Notice how the return type of the function is the return type of
the fold – it’s the type of the value we "reduce’ the list to.

Now we can implement sum and product in terms of fold.

1 def foldRightSum(xs: FunList[Int]) = foldRight(xs, 0)(_ + _)

9 / 14



FoldRight versus FoldLeft

Look at foldRight again:

1 def foldRight[A, B](xs: FunList[A], z: B)(f: (A, B) => B): B =
2 xs match {
3 case Empty => z
4 case Cons(h, t) => f(h, foldRight(t, z)(f))
5 }

Is foldRight tail recursive?
Exercise: write foldLeft

Is foldLeft tail recursive?

10 / 14



Standard Library List

Writing a functional list class is instructive but, of course, there is a
standard library List class which you should use in your everyday
programming.

11 / 14



Functional Trees

A tree is
I a leaf containing a data element, or
I a node with a left and right branch

In code:

1 sealed trait Tree[+T]
2 final case class Leaf[T](e: T) extends Tree[T]
3 final case class Node[T](left: Tree[T], right: Tree[T]) extends Tree[T]

12 / 14



Tree Algorithms

1 def size[T](t: Tree[T]): Int =
2 t match {
3 case Leaf(_) => 1
4 case Node(left, right) => size(left) + size(right)
5 }
6
7 def treeToString[T](tree: Tree[T]): String =
8 tree match {
9 case Leaf(e) => e.toString

10 case Node(left, right) =>
11 treeToString(left) + "," + treeToString(right)
12 }

Exercises:
I Write reverseTree[T](tree: Tree[T]): Tree[T],which returns a Tree

with same elements as tree, but in reverse order.

13 / 14



Closing Thoughts

Two options for modeling domain objects:
I Classes with polymorphic methods
I Agebraic data types (sum and product types) using pattern

matching
Use ADTs when the set of classes is fixed.

14 / 14


