
Basics of Functional Programming

1 / 12



A Motivating Example: Cafe

1 class Cafe {
2 def buyCoffee(cc: CreditCard): Coffee = {
3 val cup = new Coffee()
4 cc.charge(cup.price)
5 cup
6 }
7 }

Bad because card is charged as a side effect.

2 / 12



Mockable Payments

1 class BetterCafe {
2 def buyCoffee(cc: CreditCard, p: Payments): Coffee = {
3 val cup = new Coffee()
4 p.charge(cc, cup.price)
5 cup
6 }
7 }

Better because we can now supply a mock Payments object, but

I mocking is tedious,
I function still has a side effect (does more than one thing), and
I hard to reuse buyCoffee – if we buy 2 coffees we’re charged

twice rather than once.

3 / 12



Functional Cafe

1 class FunctionalCafe {
2
3 def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
4 val cup = new Coffee()
5 (cup, Charge(cc, cup.price))
6 }
7 }

Now separating concern of creating a charge from processing a
charge

4 / 12



Composable Charges

1 class FunctionalCafe {
2
3 def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
4 val cup = new Coffee()
5 (cup, Charge(cc, cup.price))
6 }
7
8 def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {
9 val purchases: List[(Coffee, Charge)] = List.fill(n)(buyCoffee(cc))

10 val (coffees, charges) = purchases.unzip
11 (coffees, charges.reduce((c1,c2) => c1.combine(c2)))
12 }
13 }

5 / 12



Composable Charges

By adding a combining operator to Charge:
1 case class Charge(creditCard: CreditCard, amount: BigDecimal) {
2 def combine(other: Charge): Charge =
3 if (cc == other.cc) Charge(cc, amount + other.amount)
4 else throw new Exception("Can't combine charges on different

cards.")
5 }

we can easily compose multiple purchases into one:
1 def coalesce(charges: List[Charge]): List[Charge] =
2 charges.groupBy(_.cc).values.map(_.reduce(_ combine _)).toList

6 / 12



Pure Functions

A pure function is simply a computational representation of a
mathematical function.

In Scala, a function is represented by a type such as A => B. The
function f: A => B is pure iff:

I f relates every value a in A to exactly one value b in B, and
I the computation of b is determined only by the value of a.

We also say that a pure funciton has no side effects, that is, no
observable effects on the program’s state.

7 / 12



Referential Transparency

We can operationalize the concept of function purity with referential
transparency.

An expression e is referentially transparent if, for all pro-
grams p, all occurrences of e in p can be replaced by the
result of evaluating e without affecting the meaning of p.
A function f is pure if the expression f (x) is referentially
transparent for all referentially transparent x.

The substitution model of function evaluation relies on referential
transparency.

8 / 12



Referential Transparency and Side Effects

Remember buyCoffee:
1 def buyCoffee(cc: CreditCard): Coffee = {
2 val cup = new Coffee()
3 cc.charge(cup.price)
4 cup
5 }

Since buyCoffee returns a new Coffee() then
p(buyCoffee(aliceCreditCard)) would have to be equivalent to
p(new Coffee()) for any p. But that’s not the case, because
p(buyCoffee(aliceCreditCard)) also results in a state change to
aliceCreditCard.

9 / 12



Referential Transparency and Mutable Data
1 scala> val x = new StringBuilder("Hello")
2 x: java.lang.StringBuilder = Hello
3
4 scala> val y = x.append(", World")
5 y: java.lang.StringBuilder = Hello, World
6
7 scala> val r1 = y.toString
8 r1: java.lang.String = Hello, World
9

10 scala> val r2 = y.toString
11 r2: java.lang.String = Hello, World

Now replace y with the expression referenced by y:
1 scala> val x = new StringBuilder("Hello")
2 x: java.lang.StringBuilder = Hello
3
4 scala> val r1 = x.append(", World").toString
5 r1: java.lang.String = Hello, World
6
7 scala> val r2 = x.append(", World").toString
8 r2: java.lang.String = Hello, World, World

r1 and r2 no longer equal.
10 / 12



Referential Transparency and Immutable Data

1 scala> val x = "Hello, World"
2 x: java.lang.String = Hello, World
3
4 scala> val r1 = x.reverse
5 r1: String = dlroW ,olleH
6
7 scala> val r2 = x.reverse
8 r1: String = dlroW ,olleH

Now replace x with expression referenced by x:
1 scala> val r1 = "Hello, World".reverse
2 r1: String = dlroW ,olleH
3
4 scala> val r2 = "Hello, World".reverse
5 r2: String = dlroW ,olleH

r1 and r2 still equal.

11 / 12



Closing Thoughts

Functional programming means programming with immutable data
and pure functions. FP gives us:

I composability
I the meaning of the whole depends only on the meaning of the

components and the rules governing their composition
I equational reasoning

I we can substitute values for the expressions that compute them,
enabling local reasoning about expressions

12 / 12


