
Scala Control Structures

1 / 12



Scala Control Structures

I Only six: if, while, do-while, for, match, try
I Scala control structures are expressions – they return values
I These returned values are sometimes useless

2 / 12



if Expressions

Syntactically similar to Java’s if-statement, but Scala’s if is an
expression. What’s the type of result below?

1 val first = true
2 val result = if (!first) "last" else "shake and bake!"

What’s the type of cal below?
1 val cal = if (true) "magic man" else 42

3 / 12



Type Inference in if Expressions
Types are static, so type of cal below is Any, because Any is the least
supertype of both String and Int

1 val cal = if (true) "magic man" else 42

Figure 1: Scala Class Hierarchy
4 / 12



Semicolon Inference

A line ending is treated as a semicolon unless one of the following
conditions is true:

I The line in question ends in a word that would not be legal as
the end of a statement, such as a period or an infix operator.

I The next line begins with a word that cannot start a statement.
I The line ends while inside parentheses (. . . ) or brackets [. . . ],

because these cannot contain multiple statements anyway.

Unlike the Java, Scala style is to end lines of multi-line expressions
with operators.

5 / 12



Imperative Loops
while is like Java’s while loop, but is an expression like other
elements of Scala

1 val enough = 3
2 var i = 1 // has to be a var because it's reassigned
3 val useless = while (i < enough) {
4 i += 1
5 }

I After code above, useless has the value (), which is the only
value of the special type Unit. Unit is analogous to void in
Java.

do-while is just like Java’s:
1 var j = 0
2 do {
3 println(j)
4 j += 1
5 } while (j < 5)

6 / 12



for Expressions

Simplest case (1 to 5 creates a Range.Inclusive sequence):
1 for (i <- 1 to 5) {
2 val dub = i * 2
3 println(dub)
4 }

I i <- coll is a generator expression. i is a new val successively
assigned values from coll in each iteration.

Add filter with an if clause after the generator expression. Only
doubles of even numbers:

1 for (i <- 1 to 10 if i % 2 == 0) {
2 val dub = i * 2
3 println(dub)
4 }

7 / 12



Variable Scope

I Scala is fully lexically scoped, which differs slightly from Java
which is mostly lexically scoped

I In code below, the dub inside the loop shadows the dub outside
the loop

1 val dub = "step"
2 for (i <- 1 to 10 if i % 2 == 0) {
3 val dub = i * 2
4 println(dub)
5 }

I In Java you can shadow static or instance variables in local
scope (inside methods), but you can’t shadow local variables in
nested local scopes, like the bodies of loops.

I In Scala you can create arbitrary blocks which are truly nested
lexical scopes.

8 / 12



for Comprehensions
Putting a yield before the body of the for expression turns it into a
comprehension, which collects the values produced into a Seq of the
same type as the source in the generator expression

1 val doubles = for (i <- 1 to 5) yield {
2 val dub = i * 2
3 dub
4 }

I doubles == Vector(2, 4, 6, 8, 10) because 1 to 5 is a Vector

Beware this gotcha:
1 val units = for (i <- 1 to 5) yield {
2 val dub = i * 2
3 println(dub)
4 }

Above would print double values, but println returns (). What’s
value of units?

9 / 12



match Expressions
I Scala match expression like Java’s switch but far better
I Can match on any type, no fall-through, and returns value of

first matching alternative.
1 val love = "boat"
2 val swipe = love match {
3 case "right" => "lame"
4 case "boat" => "das"
5 case "bug" => "herbie"
6 case "dr" => "Gene Simmons"
7 case _ => 3
8 }

I swipe above is "das". What type is swipe? Why?
I _ is the “catch-all”. Below swipe gets the value 3

1 val love = "sacrifice"
2 val swipe = love match {
3 case "right" => "lame"
4 case "boat" => "das"
5 case "bug" => "herbie"
6 case "dr" => "Gene Simmons"
7 case _ => 3
8 } 10 / 12



try Expressions

I Exceptions work like in Java except all are unchecked
I catch block uses syntax and semantics like match expressions

(only one catch block)
1 val whatKind = try {
2 throw new RuntimeException
3 } catch {
4 case e: RuntimeException => "it was a RuntimeException"
5 case e: Exception => "it was an Exception"
6 } finally {
7 println("Ensure resources are closed after unwinding the stack")
8 "lost"
9 }

I The value of whatKind is "it was a RuntimeException"
I The value of the finally block is discarded
I Could have included a catch-all clause as in the match example

on last slide

11 / 12



Conclusions

I Scala has most of the same basic control structures as Java
I Scala’s for expression is far more powerful and nothing like

anything in Java (we’ll have a whole lecture on for expressions
later)

I Most Scala control structures return values
I Static typing can result in some surprising types for values from

if and match expressions
I Scala is lexically scoped, meaning you can shadow local

variables in nested scopes

12 / 12


