
Classes and Objects

1 / 9

Class Basics

1 class Rational1(n: Int, d: Int) {
2
3 require(d != 0, "Denominator can't be negative")
4
5 def numer: Int = n
6
7 def denom: Int = d
8 }

I n and d are constructor parameters
I Think of the body of the class as the body of the primary

constructor
I The require is the first statement to execute in the constructor

I n and d are in scope in the bodies of methods numer and denom as
local variables in the primary constructor.

2 / 9

Instance Basics

Given:
1 class Rational1(n: Int, d: Int) {
2 require(d != 0, "Denominator can't be negative")
3 def numer: Int = n
4 def denom: Int = d
5 }
6 val r1 = new Rational1(1, 2)

n and d are not fields (instance variables), so this won’t compile:
1 val r1 = new Rational1(1, 2)

numer and denom are methods, so this is the right way to access those
values:

1 print(r1.numer + "/" + r1.denom)

3 / 9

val Fields and Overriding

1 class Rational2(n: Int, d: Int) {
2
3 require(d != 0, "Denominator can't be neg")
4
5 val numer: Int = n
6 val denom: Int = d
7
8 override def toString =
9 s"$numer/$denom"

10 }
11
12 val r2 = new Rational2(3, 4)

I fields normally defined as vals
I override is keyword in Scala and required iff overriding

4 / 9

Self References

Like Java, using this keyword
1 class Rational3(n: Int, d: Int) {
2 require(d != 0, "Denominator can't be negative")
3
4 val numer: Int = n
5 val denom: Int = d
6
7 override def toString = s"$numer/$denom"
8
9 def add(other: Rational3) =

10 new Rational3(
11 this.numer * other.denom + other.numer * this.denom,
12 this.denom * other.denom
13)
14 }

5 / 9

Private Members

Default visibility is public. Here we compute the GCD with a private
helper method:

1 class Rational4(n: Int, d: Int) {
2 require(d != 0, "Denominator can't be negative")
3
4 // Normalize fractions
5 val numer: Int = n / gcd(n, d)
6 val denom: Int = d / gcd(n, d)
7
8 override def toString = s"$numer/$denom"
9

10 def add(other: Rational4) =
11 new Rational4(
12 this.numer * other.denom + other.numer * this.denom,
13 this.denom * other.denom
14)
15
16 private def gcd(a: Int, b: Int): Int =
17 if (b == 0) a else gcd(b, a % b)
18 }

6 / 9

Operators

In Scala, method names are quite flexible. In fact, operators are just
methods on classes, like in this version of Rational:

1 class Rational5(n: Int, d: Int) {
2
3 // ...
4
5 def +(other: Rational5) =
6 new Rational5(
7 this.numer * other.denom + other.numer * this.denom,
8 this.denom * other.denom
9)

10 }

Since single-paramter methods can be called using “operator”
notation, we can do this:

1 val r5Half = new Rational5(1, 2)
2 val r5Quarter = new Rational5(1, 4)
3 val r5ThreeQuarters = r5Half + r5Quarter

7 / 9

Companion Objects
Scala doesn’t have “static” members but use cases for static
members can be done with a companion object, which:

I has the same name as its companion class
I must be defined in the same source file as its companion class
I has access to its companion class’s private members (and

vice-versa)

Companion objects are most often used for factory methods:
1 class Item(val description: String, val price: Double)
2
3 object Item {
4 def apply(description: String, price: Double): Item =
5 new Item(description, price)
6 }
7
8 val item = Item("Key Lime", 3.14) // Calls Item.apply

Exercise: add a companion object with a factory method to Rational5

8 / 9

Scala Applications

Singleton objects don’t have to be companion objects. A singleton
object with a main method is a console application (similar to the
main method in a Java application):

1 object Hello {
2 def main(args: Array[String]) = {
3 println("Hello, $args[0]")
4 }
5 }

Scala’s library provides a shortcut trait called App:
1 object Hello extends App {
2 println("Hello, $args[0]")
3 }

9 / 9

