
Object-Oriented Design Patterns

1 / 47

Design Patterns

Recurring object-oriented designs.
I Make proven techniques more

accessible to developers of new
systems – don’t have to study other
systems.

I Helps in choosing designs that
make the system more reusable.

I Facilitate documenentation and
communication with other
developers.

Design pattern catalog: descriptions of communicating objects and
classes that are customized to solve a general design problem in a
particular context.

2 / 47

Elements of Design Patterns

I The pattern name is a handle we can use to describe a design
problem, its solutions, and consequences in a word or two.

I The problem describes when to apply the pattern.
I The solution describes the elements that make up the design,

their relationships, responsibilities, and collaborations. The
pattern provides an abstract description of a design problem
and how a general arrangement of classes and objects solves it.

I The consequences are the results and trade-offs of applying the
pattern.

3 / 47

How Design Patterns Solve Design Problems

I Finding appropriate objects
I Determining object granularity
I Specifying object interfaces
I Specifying object implementations

4 / 47

Types versus Classes

Class versus interface inheritance

I An object’s class defines how the object is implemented.
I Class inheritance defines an object’s implementation in terms of

another object’s implementation.
I An object’s type refers to its interface – the set of methods it

can respond to.
I Interface inheritance is subtyping. It describes when an object

can be used in place of another.
Program to an interface, not an implementation.

5 / 47

Reuse Mechanisms
Inheritance versus composition

I Inheritance: “White box reuse” – subclass reuses details of
superclass and extends with new functionality
I Defined at compile-time.
I Straightforward to use
I “Inheritance breaks encapsulation” (superclass implementation

exposed to subclasses)
I Reuse can be difficult in new contexts – may require rewriting

superclasses or carrying baggage.
I Composition: “Black-box reuse” – new functionality obtained

by composing objects of other objects
I Defined at run-time by objects acquiring references to other

objects.
I Must program to interfaces, so interfaces must be well

thought-out and stable.
I Emphasis on interface stability encourages granular objects with

single responsiblities.
Favor object composition over class inheritance.

6 / 47

Designing for Change
Common causes of redesign (and design patterns that address
them):

I Creating an object by specifying a class explicitly. (Factory)
I Dependence on specific operations. (Command)
I Dependence on hardware and software platform. (Factory,

Bridge).
I Dependence on object representations or implementations

(Factory, Bridge, Proxy).
I Algorithmic dependencies. (Visitor, Iterator, Strategy, Template

Method)
I Tight coupling. Design patterns: (Factory, Bridge, Command,

Facade, Mediator, Observer).
I Extending functionality by subclassing. (Bridge, Chain of

Responsibility, Composite, Decorator, Observer, Strategy)
I Inability to alter classes conveniently. (Adapter, Decorator,

Visitor)
7 / 47

Selecting a Design Pattern
I Consider how design patterns solve design problems.

I Scan Intent sections. Read through each pattern’s intent to
find one or more that sound relevant to your problem.

I Study how patterns interrelate. Studying these relationships
can help direct you to the right pattern or group of patterns.

I Study patterns of like purpose.

I Examine a cause of redesign, look at the patterns that help you
avoid the causes of redesign.

I Consider what should be variable in your design.
I This approach is the opposite of focusing on the causes of

redesign.
I Instead of considering what might force a change to a design,

consider what you want to be able to change without redesign.
I The focus here is on encapsulating the concept that varies, a

theme of many design patterns.
8 / 47

Using Design Patterns (1 of 2)

I Read the pattern once through for an overview.
I Go back and study the Structure, Participants, and

Collaborations sections. Make sure you understand the classes
and objects in the pattern and how they relate to one another.

I Look at Sample Code to see a concrete example of the pattern
in code.

I Choose names for pattern participants that are meaningful in
the application context. OK to use abstract participant names
from design pattern. For example, if you use the Strategy
pattern for a text compositing algorithm, then you might have
classes SimpleLayoutStrategy or TeXLayoutStrategy.

9 / 47

Using Design Patterns (2 of 2)

I Define the classes. Declare their interfaces, establish their
inheritance relationships, and define the instance variables that
represent data and object references. Identify existing classes in
your application that the pattern will affect, and modify them
accordingly.

I Define application-specific names for operations in the pattern.
Use the responsibilities and collaborations associated with each
operation as a guide. Be consistent in your naming
conventions. For example, you might use the “Create-” prefix
consistently to denote a factory method.

I Implement the operations to carry out the responsibilities and
collaborations in the pattern. The Implementation section from
a pattern catalog and sample code offers hints to guide you in
the implementation.

10 / 47

Common Design Patterns

I Abstract Factory Provide an interface for creating families of
related or dependent objects without specifying their concrete
classes. (GoF, 87)

I Factory Method Define an interface for creating an object,
but let subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses. (GoF,
107)

I Adapter Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn’t
otherwise because of incompat ible interfaces. (GoF, 139)

I Composite Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly. (GoF, 163)

11 / 47

Common Design Patterns

I Decorator Attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to
subclassing for extending functionality. (GoF, 175)

I Observer Define a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically. (GoF, 293)

I Strategy Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it. (GoF, 315)

I Template Method Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses. Template
Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure. (GoF, 325)

12 / 47

Creational Design Patterns

Abstracts the instantiation process.

I Encapsulate knowledge about which concrete classes the
system uses.

I Hide how instances of these classes are created and put
together.

13 / 47

Abstract Factory

Intent: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

Structure:

Participants

I AbstractFactory declares an interface for operations that
create abstract product objects.

I ConcreteFactory implements the operations to create
concrete product objects.

I AbstractProduct declares an interface for a type of product.
I ConcreteProduct defines a product object to be created by

the corresponding concrete factory; implements the
AbstractProduct interface.

14 / 47

Abstract Factory Example: java.sql.Connection

1
2 public interface Connection ... {
3 public Blob createBlob();
4 public Statement createStatement();
5 public PreparedStatement prepareStatement();
6 ...
7 }

I The Connection interface has factory methods for a family of
related classes.

I A particular Connection instance would return database-specific
implementations of Statement, etc.

1 String URL = "jdbc:oracle:thin:username/password@amrood:1521:EMP";
2 Connection conn = DriverManager.getConnection(URL);

15 / 47

Factory Method (a.k.a. Virtual Constructor)

Intent: Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

Structure:

Participants:

I Product defines the interface of objects the factory creates.
ConcreteProduct implements the Product interface.

I Creator declares the factory method, which returns an object
of type Product.

I ConcreteCreator overrides factory method to return a
ConcreteProduct object.

16 / 47

Factory Method Example: Active Records (1 of 4)

Say we have a solution domain object that represents a problem
domain entity:

1 public class Person {
2 protected final int id;
3 protected String name;
4 public Person(int id, String name) {
5 this.id = id;
6 this.name = name;
7 }
8 public int getId() { return id; }
9 public String getName() { return name; }

10 public void setName(String name) { this.name = name; }
11 }

How can we add persistence capability in an abstract way so that we
can swap out different persistence implementations (database, etc.)?

17 / 47

Factory Method Example: Active Records (2 of 4)

Active Records are objects that know how to store and retrieve
themselves from a data store. The simplest implementation of an
ActiveRecord uses an abstract class:

1 public abstract class ActivePerson extends Person {
2 public ActivePerson(int id, String name) {
3 super(id, name);
4 }
5 public abstract Person createNew(String name);
6 public abstract Person findById(int id);
7 public abstract void save();
8 }

ActivePerson extends Person with persistence capabilities. Now
applications that use a particular data store can sublcass
ActivePerson and implement data store-specific versions of these
persistence methods.

18 / 47

Factory Method Example: Active Records (3 of 4)

Here’s a subclass of ActivePerson that uses a HashMap:
1 public class HashMapPerson extends ActivePerson {
2 private static HashMap<Integer, Person> persons = new HashMap<>();
3 private static int lastUsedId = 0;
4 protected HashMapPerson(int id, String name) {
5 super(id, name);
6 }
7 public Person createNew(String name) {
8 Person newPerson = new HashMapPerson(lastUsedId++, name);
9 persons.put(newId, newPerson);

10 return newPerson;
11 }
12 public Person findById(int id) {
13 return persons.get(id);
14 }
15 public void save() {
16 // nothing to do - client has alias to object in HashMap
17 }
18 }

19 / 47

Factory Method Example: Active Records (4 of 4)
Benefits of using ActivePerson:

I A MySQLPerson would implement MySQL-specific code that maps
relational database reperesentations of objects to their Java
object counterparts.

I Application is coded to ActivePerson interface so versions of
ActivePerson that use different data stores can be swapped out
by changing only the client code that instantiates the
ActivePerson objects.

I You could put all of your active record-instantiating code in an
Abstract Factory or a registry (which could be a singleton) so
there’s only one place to make this change for all kinds of
peristed objects.

There are other ways of doing this, but active records are easy to
understand. Object-relational mapping and data store frameworks
use these concepts.

20 / 47

Implementing Factories with Reflection

Reflection is an advanced Java programming technique often used
to implement factories. Consider:

1 MyClass instance = new MyClass();

You can also do this with reflection:
1 MyClass instance = (MyClass) Class.forName("MyClass").newInstance();

You can store the string “MyClass” in a properties file, which could
be changed without changing any code. Take a look at greeter for a
simple but complete example of this technique.

21 / 47

Singleton
Intent: Ensure a class only has one instance, and provide a global
point of access to it.

Structure

Participants

I Singleton defines an Instance operation that lets clients access
its unique instance.

I Instance is a class operation (that is, a class method in
Smalltalk and a static member function in C++, or static
method in Java). May be responsible for creating its own
unique instance.

22 / 47

Singleton Example: java.text.NumberFormat

Remember NumberFormat from CS 1331?
1 public abstract class NumberFormat extends Format {
2 protected NumberFormat() {}
3 public final static NumberFormat getInstance() { ... }
4 public static NumberFormat getInstance(Locale inLocale) { ... }
5 ...
6 }

I NumberFormat instance is instantiated once; this instance is shared
by all users of NumberFormat

I getInstance() is also a factory method: creates a NumberFormat
instance for a particular Locale

23 / 47

Implementing a Singleton
Three things to make a singleton:

I hide constructor,
I store singleton instance in some cache,
I provide public access to singleton instance.

A minimum example:
1 public class MySingleton {
2 protected static instance;
3 // Hidden with private visibility - can only instantiate inside
4 private MySingleton() {}
5
6 public static MySingleton getInstance() {
7 if (instance == null) {
8 instance = new MySingleton();
9 }

10 return instance;
11 }
12
13 }

24 / 47

Structural Design Patterns

Concerned with how classes and objects are composed to form
larger structures.

I Structural class patterns use inheritance to compose interfaces
or implementations.

I Rather than composing interfaces or implementations,
structural object patterns describe ways to compose objects to
realize new functionality.
I The added flexibility of object composition comes from the

ability to change the composition at run-time, which is
impossible with static class/interface composition.

25 / 47

Adapter (A.K.A Wrapper)
Intent: Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.

Structure

Participants

I Target defines the domain-specific interface that Client uses.
I Client collaborates with objects conforming to the Target

interface.
I Adaptee defines an existing interface that needs adapting.
I Adapter adapts the interface of Adaptec to the Target

interface. 26 / 47

Adapter Example

Imagine we’re a team writing an application that will use a hardware
transmitter, but the transmitter’s software is handled by another
team that hasn’t defined their software interface.

I We can define our own interface the way we want it to work.
I While we’re waiting for the transmitter team, we create a fake

implementation to work with.
I When the transmitter team finally gives us their interface, we

can write an adapter to fit it to our interface.
I The rest of our code is unaffected.

27 / 47

Composite
Intent: Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly.

Structure

Participants

I Component declares the interface for objects in the
composition.

I Leaf represents leaf objects (objects with no children).
I Composite defines behavior for components having children;

stores child components; implements child-related operations.
I Client manipulates objects in the composition through the

Component interface. 28 / 47

Composite Example: Dive Log (1 of 3)

Say we have a dive log with individual dives. Both represent the
concept of dive experience, so we can represent this concept
abstractly which allows us to get reports of dive experience in a
uniform way whether we have a single dive or a log of several dives:

1 public interface DiveExperience {
2 public Date getDateTimeBegin();
3 public Date getDateTimeEnd();
4 public int getMaxDepthFeet();
5 public int getBottomTimeMinutes();
6 }

This interface plays the Component role in the composite pattern.

29 / 47

Composite Example: Dive Log (2 of 3)

Dive plays the Leaf role:
1 public class Dive implements DiveExperience, Comparable<Dive> {
2 private Date dateTimeBegin, dateTimeEnd;
3 private int maxDepthFeet, bottomTimeMinutes;
4 public Dive(Date dateTimeBegin, Date dateTimeEnd,
5 int maxDepthFeet, int bottomTimeMinutes) {
6 this.dateTimeBegin = dateTimeBegin;
7 // ...
8 }
9 public Date getDateTimeBegin() **return dateTimeBegin; **

10 public Date getDateTimeEnd() ** return dateTimeEnd; **
11 public int getMaxDepthFeet() ** return maxDepthFeet; **
12 public int getBottomTimeMinutes() ** return bottomTimeMinutes; **
13 public int compareTo(Dive other) {
14 return this.getDateTimeBegin().
15 compareTo(other.getDateTimeBegin());
16 }
17 public boolean equals(Object other) ** .. **
18 public int hashCode() ** ... **
19 }

30 / 47

Composite Example: Dive Log (3 of 3)
And DiveLog plays the Composite role:

1 public class DiveLog implements DiveExperience {
2 private TreeSet<Dive> dives = new TreeSet<Dive>();
3 private int maxDepthFeet = 0;
4 public void add(Dive dive) {
5 dives.add(dive);
6 if (dive.getMaxDepthFeet() > maxDepthFeet)
7 maxDepthFeet = dive.getMaxDepthFeet();
8 }
9 public Date getDateTimeBegin() {

10 return dives.first().getDateTimeBegin();
11 }
12 public Date getDateTimeEnd() {
13 return dives.last().getDateTimeEnd();
14 }
15 public int getMaxDepthFeet() { return maxDepthFeet; }
16 public int getBottomTimeMinutes() {
17 int sum = 0;
18 for (Dive dive: dives) {
19 sum += dive.getBottomTimeMinutes();
20 }
21 return sum;
22 }
23 }

31 / 47

Decorator
Intent: Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending
functionality.

Structure

Participants

I Component defines the interface for objects that can have
responsibilities added to them dynamically.

I ConcreteComponent defines an object to which additional
responsibilities can be attached.

I Decorator maintains a reference to a Component object and
defines an interface that conforms to Component’s interface. 32 / 47

Decorator Example: JScrollPane

The Swing library provides a scrollbar decorator called JScrollPane.
Using it is easy:

1 add(new JScrollPane(new JList(...)));

By simply wrapping our JList in a JScrollPane the list will show
horizontal and vertical scroll bars as needed.

We’ve extended the functionality of a JList without having to
subclass it.

33 / 47

Behavioral Design Patterns

Behavioral patterns are concerned with algorithms and the
assignment of responsibilities between objects. These patterns
characterize complex control flow that’s difficult to follow at
run-time. They shift your focus away from flow of control to let you
concentrate just on the way objects are interconnected.

I Behavioral class patterns use inheritance to distribute behavior
between classes. (Template Method)

I The Strategy (315) pattern encapsulates an algorithm in an
object. Strategy makes it easy to specify and change the
algorithm an object uses.

Behavioral object patterns use object composition rather than
inheritance.

34 / 47

Observer (a.k.a. Dependents, Publish-Subscribe)
Intent: Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and
updated automatically.

Structure

Participants

I Subject knows its observers.
I Observer defines a notification interface for objects that

should be notified of changes in a subject.
I ConcreteSubject sends a notification to its observers when its

state changes.
I ConcreteObserver implements Observer notification interface. 35 / 47

Observer Example: Swing Buttons

javax.swing.AbstractButton is a Subject, javax.swing.JButton is a
ConcreteSubject. We set up an exit button like this:

1 JButton exitButton = new JButton("Exit");
2 exitButton.addActionListener(new ExitListener());

JButton’s addActionListener method takes an object that implements
the java.awt.event.ActionListener interface:

1 public interface ActionListener extends EventListener {
2 /**
3 * Invoked when an action occurs.
4 */
5 public void actionPerformed(ActionEvent e);
6 }

java.awt.event.ActionListener is an Observer, and ExitListener is a
ConcreteObserver.

36 / 47

Command (a.k.a. Action, Transaction)
Intent: Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log requests,
and support undoable operations.

Structure

Participants

I Command declares an interface for executing an operation.
I ConcreteCommand defines a binding between a Receiver

object and an action; implements Execute by invoking the
corresponding operation(s) on Receiver.

I Client creates a ConcreteCommand object and sets its receiver.
Invoker asks the command to carry out the request.

I Receiver knows how to perform the operations associated with
carrying out a request. Any class may serve as a Receiver.

See colorbox for an example of an undoable command.

37 / 47

Iterator (a.k.a. Cursor)
Intent: Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying representation.

Structure

Participants

I Iterator defines an interface for traversing elements.
I Concretelterator implements the Iterator interface; keeps

track of the current position in the traversal of the aggregate.
I Aggregate defines an interface for creating an Iterator object.
I ConcreteAggregate implements the Iterator creation

interface to return an instance of the proper Concretelterator.
38 / 47

Iterator Example: BST Traversal (1 of 2)

Binary tree implemented as linked nodes:
1 public class BinaryTree<E extends Comparable<E>> implements
2 Iterable<E> {
3 private class Node<E> {
4 E item;
5 Node<E> left;
6 Node<E> right;
7 Node(E item, Node<E> left, Node<E> right) {
8 this.item = item;
9 this.left = left;

10 this.right = right;
11 }
12 }
13 ...
14 private Node<E> root;
15 ...

We’d like to allow clients to traverse a BST in a uniform way
whether traversing in-order, pre-order, or post-order.

39 / 47

Iterator Example: BST Traversal (2 of 2)
java.util.Iterator interface provides a uniform way to traverse all
Java collections. Here’s an implementation for BST:

1 private class InOrder<E> implements Iterator<E> {
2 private Node<E> curNode;
3 private Stack<Node<E>> fringe;
4 public InOrder(Node<E> root) {
5 curNode = root;
6 fringe = new LinkedStack<>();
7 }
8 public boolean hasNext() { ... }
9 public E next() {

10 while (curNode != null) {
11 fringe.push(curNode);
12 curNode = curNode.left;
13 }
14 curNode = fringe.pop();
15 E item = curNode.item;
16 curNode = curNode.right;
17 return item;
18 }
19 public void remove() { throw new UnsupportedOperationException(); }
20 }

40 / 47

Strategy (a.k.a. Policy)
Intent: Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Structure

Participants

I Strategy declares an interface common to all supported
algorithms.

I ConcreteStrategy implements the algorithm using the
Strategy interface.

I Context is configured with a ConcreteStrategy object;
maintains a reference to a Strategy object; may define an
interface that lets Strategy access its data. 41 / 47

Strategy Example: Repetitive Dives (1 of 4)

When we breath air at depth the increased pressure causes nitrogen
to dissolve into body tissues. In SCUBA diving one must be mindful
of resudual nitrogen in the body absorbed during a dive.

I On repetitive dives residual nitrogen limits the depth and time
allowed on subsequent dives before decompression is required.

I The residual nitrogen in a diver’s body is represented by a
“pressure group” named by a single letter.

I There are many different ways to calcuate this pressure group:
PADI’s dive tables, NAUI’s dive tables, the U.S. Navy dive
tables, and so on.

I These tables different strategies for calculating pressure groups.

42 / 47

Strategy Example: Repetitive Dives (2 of 3)

We can represent the general Strategy for calculating pressure
group ofr repetitive dives as an interface:

1 public interface DiveTable {
2 public void addDives(SortedSet<Dive> dives);
3 public String calculatePressureGroup();
4 }

The PADI table is an example of a ConcreteStrategy:
1 public class PadiDiveTable implements DiveTable {
2 private SortedSet<Dive> dives;
3 public void addDives(SortedSet<Dive> dives) {
4 this.dives = dives;
5 }
6 public String calculatePressureGroup() {
7 // calculate using ’PADIs dive table.
8 }
9 }

43 / 47

Strategy Example: Repetitive Dives (3 of 3)
The Context in which a DiveTable strategy is used is
RepetitiveDives:

1 public class RepetitiveDives {
2 private TreeSet<Dive> dives = new TreeSet<Dive>();
3 public void add(Dive dive) {
4 dives.add(dive);
5 }
6 public String calculatePressureGroup(DiveTable diveTable) {
7 diveTable.addDives(dives);
8 return diveTable.calculatePressureGroup();
9 }

10 }

And if we have an instance of RepetitiveDives we can calucate the
ending pressure group with any concrete strategy:

1 repetitiveDives.calculatePressureGroup(new PadiDiveTable());
2 // or
3 repetitiveDives.calculatePressureGroup(new NauiDiveTable());
4 // and so on ...

44 / 47

Template Method
Intent: Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template Method lets
subclasses redefine certain steps of an algorithm without changing
the algorithm’s structure.

Structure

Participants

I AbstractClass defines abstract primitive operations that
concrete subclasses define to implement steps of an algorithm;
implements a template method defining the skeleton of an
algorithm. The template method calls primitive operations.

I ConcreteClass implements the primitive operations to carry
out subclass-specific steps of the algorithm. 45 / 47

Template Method Example: Q Learning Agent
1 class TabularQLearner[WS, MS, A] extends Learner ... {
2 override def observe(worldState: WS, action: A, worldNextState: WS) ={
3 observe(worldState, action, worldNextState)
4 val state: MS = moduleState(worldState)
5 val nextState: MS = moduleState(worldNextState)
6 val r = reward(nextState)
7 val maxAction = calcMaxAction(nextState)
8 val newVal = q((state, action)) + alpha *
9 (r + gamma * q((nextState, maxAction)) - q((state, action)))

10 q += ((state, action) -> newVal)
11 r
12 }
13 }

observe is a template method, calling the primitive moduleState and
reward methods defined in a subclass.

1 class FindGoal extends TabularQLearner[...] {
2 def moduleState(ws: WumpusState) = FindGoalState(ws.wumpus, ws.goal)
3 def reward(ms: FindGoalState) =
4 if (ms.wumpus == ms.goal) 1.0 else -0.4
5 }

46 / 47

Closing Thoughts

Design patterns

I promote loose coupling and high cohesion

I identify and encapsulate points of change in a system

I promote good general OO design guidance
I program to interfaces, not implementations
I favor composition over inheritance

I Creational patterns abstract the instantiation process.

I Structural patterns are concerned with how classes and objects
are composed to form larger structures.

I Behavioral patterns are concerned with algorithms and the
assignment of responsibilities between objects.

47 / 47

