
Creational Patterns

Christopher Simpkins
chris.simpkins@gatech.edu

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 1 / 14



Creational Design Patterns

Abstracts the instantiation process.
Encapsulate knowledge about which concrete classes the system
uses.
Hide how instances of these classes are created and put together.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 2 / 14



Abstract Factory

Intent: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.
Structure

Participants
AbstractFactory declares an interface for operations that create
abstract product objects.
ConcreteFactory implements the operations to create concrete
product objects.
AbstractProduct declares an interface for a type of product.
ConcreteProduct defines a product object to be created by the
corresponding concrete factory; implements the AbstractProduct
interface.
Client uses only interfaces declared by AbstractFactory and
AbstractProduct classes.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 3 / 14



Abstract Factory Example: java.sql.Connection

public interface Connection ... {
public Blob createBlob();
public Statement createStatement();
public PreparedStatement prepareStatement();
...

}

The Connection interface has factory methods for a family of
related classes.
A particular Connection instance would return database-specific
implementations of Statement, etc.

String URL = "jdbc:oracle:thin:username/password@amrood:1521:EMP";
Connection conn = DriverManager.getConnection(URL);

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 4 / 14



Factory Method (a.k.a. Virtual Constructor)
Intent: Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.
Structure

Participants
Product defines the interface of objects the factory creates.
ConcreteProduct implements the Product interface.
Creator declares the factory method, which returns an object of
type Product.
ConcreteCreator overrides factory method to return a
ConcreteProduct object.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 5 / 14



Factory Method Example: Active Records (1 of 4)

Say we have a solution domain object that represents a problem
domain entity:
public class Person {

protected final int id;
protected String name;

public Person(int id, String name) {
this.id = id;
this.name = name;

}

public int getId() { return id; }
public String getName() { return name; }
public void setName(String name) { this.name = name; }

}

How can we add persistence capability in an abstract way so that we
can swap out different persistence implementations (database, etc.)?

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 6 / 14



Factory Method Example: Active Records (2 of 4)

Active Records are objects that know how to store and retrieve
themselves from a data store. The simplest implementation of an
ActiveRecord uses an abstract class:
public abstract class ActivePerson extends Person {

public ActivePerson(int id, String name) {
super(id, name);

}

public abstract Person createNew(String name);

public abstract Person findById(int id);

public abstract void save();
}

ActivePerson extends Person with persistence capabilities. Now
applications that use a particular data store can sublcass
ActivePerson and implement data store-specific versions of these
persistence methods.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 7 / 14



Factory Method Example: Active Records (3 of 4)

Here’s a subclass of ActivePerson that uses a HashMap:
public class HashMapPerson extends ActivePerson {

private static HashMap<Integer, Person> persons = new HashMap<>();
private static int lastUsedId = 0;

protected HashMapPerson(int id, String name) {
super(id, name);

}

public Person createNew(String name) {
Person newPerson = new HashMapPerson(lastUsedId++, name);
persons.put(newId, newPerson);
return newPerson;

}
public Person findById(int id) {

return persons.get(id);
}
public void save() {

// nothing to do - client has alias to object in HashMap
}

}

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 8 / 14



Factory Method Example: Active Records (4 of 4)

Benefits of using ActivePerson:
A MySQLPerson would implement MySQL-specific code that
maps relational database reperesentations of objects to their Java
object counterparts.
Application is coded to ActivePerson interface so versions of
ActivePerson that use different data stores can be swapped out
by changing only the client code that instantiates the
ActivePerson objects.
You could put all of your active record-instantiating code in an
Abstract Factory or a registry (which could be a singleton) so
there’s only one place to make this change for all kinds of peristed
objects.

There are other ways of doing this, but active records are easy to
understand. All object-relational mapping and data store frameworks
use these concepts.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 9 / 14



Implementing Factories with Reflection

Refelction is an advanced Java programming technique often used to
implement factories. Consider:
MyClass instance = new MyClass();

You can also do this with reflection:
MyClass instance = (MyClass) Class.forName("MyClass").newInstance();

You can store the string "MyClass" in a properties file, which could be
changed without changing any code. Take a look at greeter for a
simple but complete example of this technique.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 10 / 14

http://www.cc.gatech.edu/~simpkins/teaching/gatech/cs2340/code/greeter/


Singleton

Intent: Ensure a class only has one instance, and provide a global
point of access to it.
Structure

Participants
Singleton defines an Instance operation that lets clients access
its unique instance.

Instance is a class operation (that is, a class method in Smalltalk
and a static member function in C++, or static method in Java).
May be responsible for creating its own unique instance.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 11 / 14



Singleton Example: java.text.NumberFormat

Remember NumberFormat from CS 1331?
public abstract class NumberFormat extends Format {

protected NumberFormat() {}

public final static NumberFormat getInstance() { ... }

public static NumberFormat getInstance(Locale inLocale) { ... }
...

}

Numberformat instance is instantiated once; this instance is
shared by all users of NumberFormat
getInstance() is also a factory method: creates a
NumberFormat instance for a particular Locale

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 12 / 14



Implementing a Singleton

Three things to make a singleton:
hide constructor,
store singleton instance in some cache,
provide public access to singleton instance.

A minimum example:
public clas MySingleton {

protected static instance;

// Hidden with private visibility - can only instantiate inside
class
private MySingleton() {}

public static MySingleton getInstance() {
if (instance == null) {

instance = new MySingleton();
}

}
}

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 13 / 14



Closing Thoughts

Creational patterns address design goals
loose coupling to specific classes

program to interfaces, factories return specific implementing
classes

designing for change
swapping out implementing classes is done in one place, the
factory, and even this can be done with configuration files
little or no change to existing code

Many consider the new operator to be a code smell. new couples your
code to a particular class. Factories remove that coupling.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 14 / 14


